
Max L Senders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7346292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1078-1083.	3.3	171
2	Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano, 2017, 11, 5785-5799.	7.3	137
3	Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nature Communications, 2017, 8, 14064.	5.8	118
4	Atherosclerotic Plaque Targeting Mechanism of Long-Circulating Nanoparticles Established by Multimodal Imaging. ACS Nano, 2015, 9, 1837-1847.	7.3	105
5	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	11.6	94
6	Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging, 2019, 12, 2015-2026.	2.3	66
7	Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Science Translational Medicine, 2019, 11, .	5.8	51
8	A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis. Journal of Controlled Release, 2017, 262, 47-57.	4.8	44
9	Nanoimmunotherapy to treat ischaemic heart disease. Nature Reviews Cardiology, 2019, 16, 21-32.	6.1	43
10	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	15.6	42
11	PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a HumanÂAntibody Detects ClinicallyÂRelevant Atherothrombosis. Journal of the American College of Cardiology, 2018, 71, 321-335.	1.2	39
12	Imaging Cardiovascular and Lung Macrophages With the Positron Emission Tomography Sensor ⁶⁴ Cu-Macrin in Mice, Rabbits, and Pigs. Circulation: Cardiovascular Imaging, 2020, 13, e010586.	1.3	32
13	Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques. NMR in Biomedicine, 2015, 28, 1304-1314.	1.6	30
14	Targeting myeloperoxidase in inflammatory atherosclerosis. European Heart Journal, 2018, 39, 3311-3313.	1.0	19
15	Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging. Journal of Nuclear Cardiology, 2020, 27, 1126-1141.	1.4	17
16	Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Scientific Reports, 2022, 12, 6185.	1.6	14
17	Hybrid PET/MR Kernelised Expectation Maximisation Reconstruction for Improved Image-Derived Estimation of the Input Function from the Aorta of Rabbits. Contrast Media and Molecular Imaging, 2019, 2019, 1-12.	0.4	11
18	Development and Multiparametric Evaluation of Experimental Atherosclerosis in Rabbits. Methods in Molecular Biology, 2018, 1816, 385-400.	0.4	4

#	Article	IF	CITATIONS
19	Imaging-guided revival of nanomedicine?. Nanomedicine, 2017, 12, 89-90.	1.7	3
20	Employing nanobodies for immune landscape profiling by PET imaging in mice. STAR Protocols, 2021, 2, 100434.	0.5	2