Richard B Kaner

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7346049/richard-b-kaner-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65,906 105 421 253 h-index g-index citations papers 8.21 469 11.7 71,727 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
421	Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals 2022 , 1, 158-1	69	4
420	Trilayer Metal-Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	12
419	A readily scalable, clinically demonstrated, antibiofouling zwitterionic surface treatment for implantable medical devices <i>Advanced Materials</i> , 2022 , e2200254	24	1
418	Hardening Effects in Superhard Transition-Metal Borides. <i>Accounts of Materials Research</i> , 2022 , 3, 100-1	0,9 5	1
4 1 7	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices (Adv. Mater. 20/2022). <i>Advanced Materials</i> , 2022 , 34, 2270152	24	
416	Reverse osmosis membrane compaction and embossing at ultra-high pressure operation. <i>Desalination</i> , 2022 , 537, 115875	10.3	О
4 ¹ 5	Polyaniline-Lignin Interpenetrating Network for Supercapacitive Energy Storage. <i>Nano Letters</i> , 2021 , 21, 9485-9493	11.5	8
414	Liquid metal enabled continuous flow reactor: A proof-of-concept. <i>Matter</i> , 2021 , 4, 4022-4041	12.7	8
413	Liquid-Metal-Enabled Mechanical-Energy-Induced CO Conversion. <i>Advanced Materials</i> , 2021 , e2105789	24	7
412	Conducting Polyaniline for Antifouling Ultrafiltration Membranes: Solutions and Challenges. <i>Nano Letters</i> , 2021 , 21, 3699-3707	11.5	6
411	Assembly of Nanofluidic MXene Fibers with Enhanced Ionic Transport and Capacitive Charge Storage by Flake Orientation. <i>ACS Nano</i> , 2021 , 15, 7821-7832	16.7	27
410	Self-healing flexible/stretchable energy storage devices. <i>Materials Today</i> , 2021 , 44, 78-104	21.8	23
409	Graphene's Role in Emerging Trends of Capacitive Energy Storage. <i>Small</i> , 2021 , 17, e2006875	11	10
408	Laser-carbonization: Peering into the formation of micro-thermally produced (N-doped)carbons. <i>Carbon</i> , 2021 , 176, 500-510	10.4	7
407	3D Graphene Network with Covalently Grafted Aniline Tetramer for Ultralong-Life Supercapacitors. <i>Advanced Functional Materials</i> , 2021 , 31, 2102397	15.6	16
406	Facile Fabrication of Multivalent VOx/Graphene Nanocomposite Electrodes for High-Energy-Density Symmetric Supercapacitors. <i>Advanced Energy Materials</i> , 2021 , 11, 2100768	21.8	10
405	Self-Deposition of 2D Molybdenum Sulfides on Liquid Metals. <i>Advanced Functional Materials</i> , 2021 , 31, 2005866	15.6	22

(2020-2021)

404	Unique surface patterns emerging during solidification of liquid metal alloys. <i>Nature Nanotechnology</i> , 2021 , 16, 431-439	28.7	46	
403	Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. <i>Energy and Environmental Science</i> , 2021 , 14, 1602-1611	35.4	19	
402	Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage. <i>Materials Horizons</i> , 2021 , 8, 1130-1152	14.4	19	
401	Bioinspired polydopamine supported on oxygen-functionalized carbon cloth as a high-performance 1.2 V aqueous symmetric metal-free supercapacitor. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7712-772	5 3	7	
400	A multipronged approach for systematic in vitro quantification of catheter-associated biofilms. Journal of Hazardous Materials Letters, 2021 , 2, 100032	3.3	2	
399	Crystalline tetra-aniline with chloride interactions towards a biocompatible supercapacitor. <i>Materials Horizons</i> , 2021 ,	14.4	2	
398	On-Chip Chemiresistive Sensor Array for On-Road NO Monitoring with Quantification. <i>Advanced Science</i> , 2020 , 7, 2002014	13.6	10	
397	Nucleation and Growth of Polyaniline Nanofibers onto Liquid Metal Nanoparticles. <i>Chemistry of Materials</i> , 2020 , 32, 4808-4819	9.6	30	
396	3D Crumpled Ultrathin 1T MoS for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors. <i>ACS Nano</i> , 2020 , 14, 7308-7318	16.7	55	
395	Ultrapermeable Organic Solvent Nanofiltration Membranes with Precisely Tailored Support Layers Fabricated Using Thin-Film Liftoff. <i>ACS Applied Materials & District Science</i> , 2020, 12, 30796-30804	9.5	9	
394	Liquid-Metal-Templated Synthesis of 2D Graphitic Materials at Room Temperature. <i>Advanced Materials</i> , 2020 , 32, e2001997	24	44	
393	Exploration of Advanced Electrode Materials for Approaching High-Performance Nickel-Based Superbatteries. <i>Small</i> , 2020 , 16, e2001340	11	13	
392	Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness. <i>Nano Letters</i> , 2020 , 20, 2209-2218	11.5	16	
391	Self-Assembly and Cross-Linking of Conducting Polymers into 3D Hydrogel Electrodes for Supercapacitor Applications. <i>ACS Applied Energy Materials</i> , 2020 , 3, 923-932	6.1	39	
390	In Operando Calorimetric Measurements for Activated Carbon Electrodes in Ionic Liquid Electrolytes under Large Potential Windows. <i>ChemSusChem</i> , 2020 , 13, 1013-1026	8.3	8	
389	How permeable could a reverse osmosis membrane be if it was specifically developed for uncharged organic solute rejection?. <i>AWWA Water Science</i> , 2020 , 2, e1189	1.6	1	
388	Toward High-Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale: Looking into the Future Research Roadmap. <i>Advanced Materials Technologies</i> , 2020 , 5, 20005	520	16	
387	Enhancing Polyvalent Cation Rejection Using Perfluorophenylazide-Grafted-Copolymer Membrane Coatings. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	4	

386	Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18093-18102	16.4	11
385	Enhancing cycling stability of tungsten oxide supercapacitor electrodes via a boron cluster-based molecular cross-linking approach. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18015-18023	13	4
384	Performance, Energy and Cost of Produced Water Treatment by Chemical and Electrochemical Coagulation. <i>Water (Switzerland)</i> , 2020 , 12, 3426	3	4
383	Understanding the mechanism of hardness enhancement in tantalum-substituted tungsten monoboride solid solutions. <i>Journal of Applied Physics</i> , 2019 , 125, 082529	2.5	8
382	Catalytic Effects of Aniline Polymerization Assisted by Oligomers. ACS Catalysis, 2019, 9, 6596-6606	13.1	1
381	Carbon Nanodots for Capacitor Electrodes. <i>Trends in Chemistry</i> , 2019 , 1, 858-868	14.8	15
380	Patching laser-reduced graphene oxide with carbon nanodots. <i>Nanoscale</i> , 2019 , 11, 12712-12719	7.7	12
379	Self-Assembled Functionally Graded Graphene Films with Tunable Compositions and Their Applications in Transient Electronics and Actuation. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 23463-23473	9.5	6
378	Synthesis and Characterization of Single-Phase Metal Dodecaboride Solid Solutions: ZrY B and ZrU B. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9047-9062	16.4	11
377	Direct grafting of tetraaniline perfluorophenylazide photochemistry to create antifouling, low bio-adhesion surfaces. <i>Chemical Science</i> , 2019 , 10, 4445-4457	9.4	11
376	All printable snow-based triboelectric nanogenerator. <i>Nano Energy</i> , 2019 , 60, 17-25	17.1	27
375	Radial X-Ray Diffraction Study of Superhard Early Transition Metal Dodecaborides under High Pressure. <i>Advanced Functional Materials</i> , 2019 , 29, 1900293	15.6	9
374	Graphene/oligoaniline based supercapacitors: Towards conducting polymer materials with high rate charge storage. <i>Energy Storage Materials</i> , 2019 , 19, 137-147	19.4	26
373	Fire-retardant, self-extinguishing triboelectric nanogenerators. <i>Nano Energy</i> , 2019 , 59, 336-345	17.1	30
372	Towards establishing standard performance metrics for batteries, supercapacitors and beyond. <i>Chemical Society Reviews</i> , 2019 , 48, 1272-1341	58.5	461
371	Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13948-13953	16.4	96
370	Synthesis and High-Pressure Mechanical Properties of Superhard Rhenium/Tungsten Diboride Nanocrystals. <i>ACS Nano</i> , 2019 , 13, 10036-10048	16.7	4
369	Next-Generation Asymmetric Membranes Using Thin-Film Liftoff. <i>Nano Letters</i> , 2019 , 19, 5036-5043	11.5	16

(2018-2019)

368	Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. <i>ACS Nano</i> , 2019 , 13, 12567-12576	16.7	35
367	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. <i>Nature Communications</i> , 2019 , 10, 4645	17.4	39
366	Printable magnesium[ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. <i>Nature Communications</i> , 2019 , 10, 4913	17.4	90
365	Highly Permeable Polyaniline Traphene Oxide Nanocomposite Membranes for CO2 Separations. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 3233-3241	4.3	25
364	Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. <i>Advanced Science</i> , 2019 , 6, 1802230	13.6	95
363	Carbon Nanodots: Laser-Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation (Small 52/2019). <i>Small</i> , 2019 , 15, 1970285	11	1
362	Laser-Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation. Small, 2019, 15, e1904	918	4
361	Fast response electrochemical capacitor electrodes created by laser-reduction of carbon nanodots. <i>Materials Today Energy</i> , 2019 , 11, 114-119	7	15
360	Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. <i>Materials Today Energy</i> , 2019 , 12, 26-36	7	38
359	Microscopic investigation of local structural and electronic properties of tungsten tetraboride: a superhard metallic material. <i>Journal of Materials Science</i> , 2019 , 54, 3547-3557	4.3	4
358	Understanding How Bonding Controls Strength Anisotropy in Hard Materials by Comparing the High-Pressure Behavior of Orthorhombic and Tetragonal Tungsten Monoboride. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 5647-5656	3.8	10
357	A molecular cross-linking approach for hybrid metal oxides. <i>Nature Materials</i> , 2018 , 17, 341-348	27	66
356	Monolithically Integrated Self-Charging Power Pack Consisting of a Silicon Nanowire Array/Conductive Polymer Hybrid Solar Cell and a Laser-Scribed Graphene Supercapacitor. <i>ACS Applied Materials & Discounty Interfaces</i> , 2018 , 10, 15609-15615	9.5	49
355	Effects of Dodecaboride-Forming Metals on the Properties of Superhard Tungsten Tetraboride. <i>Chemistry of Materials</i> , 2018 , 30, 3559-3570	9.6	16
354	Investigation of ternary metal dodecaborides (MMM)B (M, M and M = Zr, Y, Hf and Gd). <i>Dalton Transactions</i> , 2018 , 47, 6683-6691	4.3	9
353	Hollow Pt-Functionalized SnO Hemipill Network Formation Using a Bacterial Skeleton for the Noninvasive Diagnosis of Diabetes. <i>ACS Sensors</i> , 2018 , 3, 661-669	9.2	30
352	Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors. <i>Nanotechnology</i> , 2018 , 29, 175402	3.4	41
351	Synthesis and characterization of aluminum diboride products using 27Al, 11B NMR and ab initio studies. <i>Journal of Materials Science</i> , 2018 , 53, 3309-3322	4.3	3

350	A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications. <i>Advanced Materials</i> , 2018 , 30, 1704449	24	230
349	Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density. <i>Composites Science and Technology</i> , 2018 , 160, 50-59	8.6	43
348	An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. <i>Energy Storage Materials</i> , 2018 , 11, 282-293	19.4	59
347	Perspective: Superhard metal borides: A look forward. <i>APL Materials</i> , 2018 , 6, 070901	5.7	50
346	High-Throughput Continuous Production of Shear-Exfoliated 2D Layered Materials using Compressible Flows. <i>Advanced Materials</i> , 2018 , 30, e1800200	24	40
345	Roll-to-Roll Functionalization of Polyolefin Separators for High-Performance Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3292-3300	6.1	11
344	The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit. <i>Nano Energy</i> , 2018 , 44, 489-498	17.1	88
343	Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. <i>Nano Research</i> , 2018 , 11, 2836-2846	10	25
342	Laser-reduced graphene-oxide/ferrocene: a 3-D redox-active composite for supercapacitor electrodes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20463-20472	13	29
341	Carbon Nanodots as Feedstock for a Uniform Hematite-Graphene Nanocomposite. <i>Small</i> , 2018 , 14, e18	03656	15
340	Optically Active Poly[2-(-butyl)aniline] Nanofibers Prepared via Enantioselective Polymerization. <i>ACS Omega</i> , 2018 , 3, 18895-18905	3.9	4
339	Superhard Tungsten Diboride-Based Solid Solutions. <i>Inorganic Chemistry</i> , 2018 , 57, 15305-15313	5.1	21
338	Thionine Functionalized 3D Graphene Aerogel: Combining Simplicity and Efficiency in Fabrication of a Metal-Free Redox Supercapacitor. <i>Advanced Energy Materials</i> , 2018 , 8, 1802869	21.8	94
337	Design and Mechanisms of Asymmetric Supercapacitors. <i>Chemical Reviews</i> , 2018 , 118, 9233-9280	68.1	1396
336	Silicon expansion at the service of safety IA reversible potential-dependent switch for safer batteries. <i>Materials Today Energy</i> , 2018 , 10, 89-97	7	2
335	Investigation of Hardness of Ternary Borides of the YCrB4, Y2ReB6, Y3ReB7, and YMo3B7 Structural Types. <i>Chemistry of Materials</i> , 2018 , 30, 6494-6502	9.6	12
334	Polyaniline nanofibers: broadening applications for conducting polymers. <i>Chemical Society Reviews</i> , 2017 , 46, 1510-1525	58.5	355
333	Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. <i>Nature Communications</i> , 2017 , 8, 14482	17.4	172

(2017-2017)

332	Next-Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. <i>Advanced Functional Materials</i> , 2017 , 27, 1605745	15.6	174
331	Ultrathin Graphene-Protein Supercapacitors for Miniaturized Bioelectronics. <i>Advanced Energy Materials</i> , 2017 , 7, 1700358	21.8	63
330	Calligraphy-inspired brush written foldable supercapacitors. <i>Nano Energy</i> , 2017 , 38, 428-437	17.1	21
329	A Surprising Failure Mechanism in Symmetric Supercapacitors at High Voltages. <i>ChemElectroChem</i> , 2017 , 4, 2660-2668	4.3	22
328	Aluminum-Ion-Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. <i>Small</i> , 2017 , 13, 1700380	11	76
327	Rediscovering the Crystal Chemistry of Borides. <i>Advanced Materials</i> , 2017 , 29, 1604506	24	187
326	11B NMR Study of WB2. Journal of Physical Chemistry C, 2017 , 121, 1315-1320	3.8	3
325	Synthesis of N = 8 Armchair Graphene Nanoribbons from Four Distinct Polydiacetylenes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15878-15890	16.4	57
324	Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. <i>ACS Nano</i> , 2017 , 11, 10974-10983	16.7	80
323	A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. <i>Science</i> , 2017 , 358, 332-335	33.3	384
322	Organic dispersion of polyaniline and single-walled carbon nanotubes and polyblends with poly(methyl methacrylate). <i>Polymer</i> , 2017 , 129, 1-4	3.9	13
321	Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. <i>Materials Horizons</i> , 2017 , 4, 1145-1150	14.4	150
320	A wide potential window aqueous supercapacitor based on LiMn2O4EGO nanocomposite. <i>Journal of the Iranian Chemical Society</i> , 2017 , 14, 2579-2590	2	12
319	Furthering Our Understanding of the Doping Mechanism in Conjugated Polymers Using Tetraaniline. <i>Macromolecules</i> , 2017 , 50, 5892-5897	5.5	18
318	Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte. <i>Nano Today</i> , 2017 , 15, 15-25	17.9	83
317	Rapid Prototyping of a Low-cost Graphene-based Impedimetric Biosensor. <i>Procedia Technology</i> , 2017 , 27, 274-276		2
316	Lithium-Ion Insertion Properties of Solution-Exfoliated Germanane. ACS Nano, 2017, 11, 7995-8001	16.7	48
315	Fabrication of Graphene-Polyimide Nanocomposites with Superior Electrical Conductivity. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 19, 43230-43238	9.5	29

314	Effects of Variable Boron Concentration on the Properties of Superhard Tungsten Tetraboride. Journal of the American Chemical Society, 2017 , 139, 17120-17127	16.4	26
313	Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS nanosheets. <i>Nanoscale</i> , 2016 , 8, 16276-16283	7.7	46
312	Superhard Mixed Transition Metal Dodecaborides. <i>Chemistry of Materials</i> , 2016 , 28, 6605-6612	9.6	44
311	Graphene for batteries, supercapacitors and beyond. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	681
310	3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors. <i>Advanced Materials</i> , 2016 , 28, 6719-26	24	335
309	Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors. <i>Nanotechnology</i> , 2016 , 27, 315401	3.4	40
308	Low-Fouling Antibacterial Reverse Osmosis Membranes via Surface Grafting of Graphene Oxide. <i>ACS Applied Materials & District Materials</i>	9.5	84
307	Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries. <i>Current Applied Physics</i> , 2016 , 16, 611-617	2.6	18
306	11B NMR Spectral and Nuclear Spinllattice Relaxation Analyses of ReB2. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2901-2907	3.8	8
305	Ultraincompressible, Superhard Materials. <i>Annual Review of Materials Research</i> , 2016 , 46, 465-485	12.8	73
304	Enhancing the Hardness of Superhard Transition-Metal Borides: Molybdenum-Doped Tungsten Tetraboride. <i>Chemistry of Materials</i> , 2016 , 28, 632-637	9.6	49
303	Characterization of Aniline Tetramer by MALDI TOF Mass Spectrometry upon Oxidative and Reductive Cycling. <i>Polymers</i> , 2016 , 8,	4.5	15
302	Superhard Monoborides: Hardness Enhancement through Alloying in W1- x Tax B. <i>Advanced Materials</i> , 2016 , 28, 6993-8	24	60
301	Superhard W0.5Ta0.5B nanowires prepared at ambient pressure. <i>Applied Physics Letters</i> , 2016 , 109, 203	1307	16
300	Synthesis and applications of conducting polymer nanofibers. MRS Bulletin, 2016, 41, 785-790	3.2	3
299	Synthesis of sub-millimeter Bi-/multi-layer graphene by designing a sandwiched structure using copper foils. <i>Applied Physics Letters</i> , 2016 , 109, 123107	3.4	2
298	Stabilization of LnB (Ln = Gd, Sm, Nd, and Pr) in ZrLnB under Ambient Pressure. <i>Inorganic Chemistry</i> , 2016 , 55, 12419-12426	5.1	19
297	An etching phenomenon exhibited by chemical vapor deposited graphene on a copper pocket. <i>Carbon</i> , 2016 , 106, 279-283	10.4	10

(2015-2016)

296	Extrinsic Hardening of Superhard Tungsten Tetraboride Alloys with Group 4 Transition Metals. Journal of the American Chemical Society, 2016 , 138, 5714-21	16.4	48
295	Stabilization of HfB12 in Y1-xHfxB12 under Ambient Pressure. <i>Inorganic Chemistry</i> , 2016 , 55, 5051-5	5.1	29
294	Synthesis of Graphene Nanoribbons via the Topochemical Polymerization and Subsequent Aromatization of a Diacetylene Precursor. <i>CheM</i> , 2016 , 1, 78-90	16.2	65
293	Superhard Rhenium/Tungsten Diboride Solid Solutions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14398-14408	16.4	33
292	Cadmium nanoclusters in a protein matrix: Synthesis, characterization, and application in targeted drug delivery and cellular imaging. <i>Nano Research</i> , 2016 , 9, 3229-3246	10	32
291	High Surface Area Tunnels in Hexagonal WO□ <i>Nano Letters</i> , 2015 , 15, 4834-8	11.5	118
29 0	Interfacial chemical oxidative synthesis of multifunctional polyfluoranthene. <i>Chemical Science</i> , 2015 , 6, 2087-2101	9.4	25
289	Highly Ordered Mesoporous CuCo2O4 Nanowires, a Promising Solution for High-Performance Supercapacitors. <i>Chemistry of Materials</i> , 2015 , 27, 3919-3926	9.6	295
288	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-65	58.5	851
287	Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 4233-8	11.5	408
286	Structure of superhard tungsten tetraboride: a missing link between MB2 and MB12 higher borides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 322.	3 ¹ 4.5	63
285	Novel chlorine resistant low-fouling ultrafiltration membrane based on a hydrophilic polyaniline derivative. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8725-8733	13	31
284	Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. <i>Nano Energy</i> , 2015 , 18, 57-70	17.1	145
283	Introducing the micro-super-capacitor laser-etched graphene brings Moore's law to energy storage. <i>IEEE Spectrum</i> , 2015 , 52, 40-45	1.7	3
282	Efficient synthesis of oligofluoranthene nanorods with tunable functionalities. <i>Chemical Science</i> , 2015 , 6, 7190-7200	9.4	14
281	Mechanochemical Synthesis and High Temperature Thermoelectric Properties of Calcium-Doped Lanthanum Telluride LaCaTe. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10459-10466	7.1	16
280	Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction. <i>Applied Physics Letters</i> , 2015 , 107, 041903	3.4	14
279	Graphene-Assisted Solution Growth of Vertically Oriented Organic Semiconducting Single Crystals. <i>ACS Nano</i> , 2015 , 9, 9486-96	16.7	37

278	A mechanistic study of cross-coupling reactions catalyzed by palladium nanoparticles supported on polyaniline nanofibers. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 35-41	6.8	18
277	2D MoS2 PDMS Nanocomposites for NO2 Separation. <i>Small</i> , 2015 , 11, 5035-40	11	48
276	Flash Converted Graphene for Ultra-High Power Supercapacitors. <i>Advanced Energy Materials</i> , 2015 , 5, 1500786	21.8	68
275	Enhanced Gas Permeation through Graphene Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 13700-13712	3.8	62
274	Fabrication of high power LiNi0.5Mn1.5O4 battery cathodes by nanostructuring of electrode materials. <i>RSC Advances</i> , 2015 , 5, 50433-50439	3.7	10
273	10B and 11B NMR Study of Elemental Boron. Journal of Physical Chemistry C, 2015, 119, 13807-13813	3.8	14
272	Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 4851-60	9.5	278
271	Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. <i>ACS Nano</i> , 2014 , 8, 1500-10	16.7	186
270	Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. <i>Nature Communications</i> , 2014 , 5, 3200	17.4	83
269	Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. <i>Chemical Communications</i> , 2014 , 50, 1972-5	5.8	230
268	Scalable antifouling reverse osmosis membranes utilizing perfluorophenyl azide photochemistry. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1528-33	4.8	27
267	Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. <i>Advanced Materials</i> , 2014 , 26, 3931-7	24	252
266	Direct laser writing of graphene electronics. ACS Nano, 2014, 8, 8725-9	16.7	111
265	Maintaining Cytocompatibility of Biopolymers Through a Graphene Layer for Electrical Stimulation of Nerve Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 769-776	15.6	36
264	Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. <i>Nanoscale</i> , 2014 , 6, 13613-22	7.7	61
263	Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives. <i>Electrochimica Acta</i> , 2014 , 136, 182-188	6.7	33
262	Raman scattering from superhard rhenium diboride under high pressure. <i>Applied Physics Letters</i> , 2014 , 104, 011904	3.4	3
261	Lattice stress states of superhard tungsten tetraboride from radial x-ray diffraction under nonhydrostatic compression. <i>Physical Review B</i> , 2014 , 90,	3.3	29

260 Hybrid Solar Cells: Materials, Interfaces, and Devices. Springer Series in Materials Science, 2014, 357-387 0.9

259	Highly dispersible polypyrrole nanospheres for advanced nanocomposite ultrafiltration membranes. <i>Materials Horizons</i> , 2014 , 1, 58-64	14.4	49
258	Hardness and fracture toughness of thermoelectric La3 Te4. <i>Journal of Materials Science</i> , 2014 , 49, 1150-1156	4.3	21
257	Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. <i>Chemical Communications</i> , 2013 , 49, 6349-51	5.8	21
256	Processable colloidal dispersions of polyaniline-based copolymers for transparent electrodes. <i>Polymer Chemistry</i> , 2013 , 4, 4814	4.9	20
255	Semiconductors: Two-Dimensional Molybdenum Trioxide and Dichalcogenides (Adv. Funct. Mater. 32/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 3946-3946	15.6	4
254	Fabrication of Low-Fouling Ultrafiltration Membranes Using a Hydrophilic, Self-Doping Polyaniline Additive. <i>Chemistry of Materials</i> , 2013 , 25, 3597-3602	9.6	58
253	Carbon nanotube/polyaniline nanofiber ultrafiltration membranes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 15390	13	37
252	Ultra-sensitive chemosensors for Fe(III) and explosives based on highly fluorescent oligofluoranthene. <i>Chemical Science</i> , 2013 , 4, 1970	9.4	85
251	Oh, the places you'll go with graphene. Accounts of Chemical Research, 2013, 46, 2244-53	24.3	105
250	Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. <i>Nature Communications</i> , 2013 , 4, 1475	17.4	1376
249	Direct microscopic observation of membrane formation by nonsolvent induced phase separation. Journal of Membrane Science, 2013 , 431, 212-220	9.6	85
248	Two-Dimensional Molybdenum Trioxide and Dichalcogenides. <i>Advanced Functional Materials</i> , 2013 , 23, 3952-3970	15.6	378
247	Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes. <i>Nanoscale</i> , 2013 , 5, 3856-62	7.7	53
246	Optimizing Thermoelectric Efficiency of La3-xTe4 with Calcium Metal Substitution. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1490, 83-88		3
245	Oligotriphenylene Nanofiber Sensors for Detection of Nitro-Based Explosives. <i>Advanced Functional Materials</i> , 2012 , 22, 726-735	15.6	74
244	Toward inexpensive superhard materials: tungsten tetraboride-based solid solutions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 20660-8	16.4	86
243	Synthesis and crystal structure of cubic Ca16Si17N34. <i>Inorganic Chemistry</i> , 2012 , 51, 12626-9	5.1	10

242	Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. <i>ACS Nano</i> , 2012 , 6, 1395-403	16.7	291
241	Sulfonated Polyaniline Nanostructures Synthesized via Rapid Initiated Copolymerization with Controllable Morphology, Size, and Electrical Properties. <i>Macromolecules</i> , 2012 , 45, 1570-1579	5.5	67
240	Oriented polythiophene nanofibers grown from CdTe quantum dot surfaces. Small, 2012, 8, 1191-6, 11	25 1	4
239	Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. <i>Small</i> , 2012 , 8, 1415-22	11	84
238	Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies. <i>ACS Nano</i> , 2012 , 6, 4045-53	16.7	150
237	Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. <i>Science</i> , 2012 , 335, 1326-30	33.3	3197
236	Morphological and dimensional control via hierarchical assembly of doped oligoaniline single crystals. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9251-62	16.4	93
235	Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition. <i>Nanoscale</i> , 2012 , 4, 3075-82	7.7	12
234	Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering. <i>Nano Letters</i> , 2012 , 12, 3581-6	11.5	36
233	Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst. <i>Angewandte Chemie</i> , 2012 , 124, 3888-3891	3.6	71
232	Innenr©ktitelbild: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew. Chem. 16/2012). <i>Angewandte Chemie</i> , 2012 , 124, 4045-4045	3.6	
231	Graphene-supported hemin as a highly active biomimetic oxidation catalyst. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3822-5	16.4	275
230	Inside Back Cover: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew. Chem. Int. Ed. 16/2012). <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3975-3975	16.4	
229	Oligoaniline crystals: morphology control, hierarchical assembly and structure-property relationships. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1402, 48		
228	Exploring the high-pressure behavior of superhard tungsten tetraboride. <i>Physical Review B</i> , 2012 , 85,	3.3	77
227	Lattice strain of osmium diboride under high pressure and nonhydrostatic stress. <i>Journal of Applied Physics</i> , 2012 , 112, 013526	2.5	7
226	Superhard Materials 2012 ,		10
225	Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. <i>Nano Letters</i> , 2011 , 11, 954-9	11.5	192

224	The effects of thionyl chloride on the properties of graphene and graphenedarbon nanotube composites. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3391		58
223	Carrier Mobility of Single-Walled Carbon Nanotube-Reinforced Polyaniline Nanofibers. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16187-16192	3.8	36
222	Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. Journal of Materials Chemistry, 2011 , 21, 12259		179
221	Structure of Ultralong Polyaniline Nanofibers Using Initiators. <i>Macromolecules</i> , 2011 , 44, 2735-2742	5.5	58
220	Graphene flash memory. ACS Nano, 2011 , 5, 7812-7	16.7	204
219	Direct sub-micrometer patterning of nanostructured conducting polymer films via a low-energy infrared laser. <i>Nano Letters</i> , 2011 , 11, 3128-35	11.5	26
218	High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2613-8	11.8	65
217	QCM based mercury vapor sensor modified with polypyrrole supported palladium. <i>Sensors and Actuators B: Chemical</i> , 2011 , 160, 616-622	8.5	25
216	The oxidation of aniline to produce polyanilinella process yielding many different nanoscale structures. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3534-3550		234
215	Applications of oligomers for nanostructured conducting polymers. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 35-49	4.8	41
214	Nanostructured Tungsten Oxide iProperties, Synthesis, and Applications. <i>Advanced Functional Materials</i> , 2011 , 21, 2175-2196	15.6	994
213	Continuity of graphene on polycrystalline copper. <i>Nano Letters</i> , 2011 , 11, 251-6	11.5	162
212	Thermoelastic properties of ReB2 at high pressures and temperatures and comparison with Pt, Os, and Re. <i>Journal of Applied Physics</i> , 2011 , 110, 093518	2.5	6
211	Size control of gold nanoparticles grown on polyaniline nanofibers for bistable memory devices. <i>ACS Nano</i> , 2011 , 5, 3469-74	16.7	122
21 0	Tungsten tetraboride, an inexpensive superhard material. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 10958-62	11.5	256
209	Solution-processed transparent electrodes. MRS Bulletin, 2011, 36, 749-755	3.2	98
208	Electrochemical polymerization of PEDOT on catalyst-free patterned GaAs nanopillars for high efficiency hybrid photovoltaics 37th IEEE photovoltaic specialists conference 2011 ,		1
207	Nanostructured Silicon-based Composites for High Temperature Thermoelectric Applications. Materials Research Society Symposia Proceedings, 2010, 1267, 1		

206	Versatile solution for growing thin films of conducting polymers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 19673-8	11.5	49
205	Nanostructured materials for thermoelectric applications. <i>Chemical Communications</i> , 2010 , 46, 8311-24	5.8	171
204	Honeycomb carbon: a review of graphene. <i>Chemical Reviews</i> , 2010 , 110, 132-45	68.1	5411
203	Rapid Solid-State Synthesis of Nanostructured Silicon. <i>Chemistry of Materials</i> , 2010 , 22, 2534-2540	9.6	15
202	Pore-structure, hydrophilicity, and particle filtration characteristics of polyanilinepolysulfone ultrafiltration membranes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4621		87
201	Nanoscale morphology, dimensional control, and electrical properties of oligoanilines. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10365-73	16.4	186
200	Suppression of the magneto resistance in high electric fields of polyacetylene nanofibers. <i>Synthetic Metals</i> , 2010 , 160, 1349-1353	3.6	14
199	Facile synthesis of water-dispersible conducting polymer nanospheres. ACS Nano, 2010, 4, 5193-202	16.7	77
198	A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. <i>ACS Nano</i> , 2010 , 4, 3845-52	16.7	509
197	Platinum/Graphene Nanosheet/SiC Contacts and Their Application for Hydrogen Gas Sensing. Journal of Physical Chemistry C, 2010 , 114, 13796-13801	3.8	154
196	Rhenium diboride's monocrystal elastic constants, 308 to 5 K. <i>Journal of the Acoustical Society of America</i> , 2010 , 127, 2797-801	2.2	11
195	Synthesis of nanometre-thick MoO3 sheets. <i>Nanoscale</i> , 2010 , 2, 429-33	7.7	207
194	Graphene/Polyaniline Nanocomposite for Hydrogen Sensing. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 16168-16173	3.8	387
193	Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. <i>Advanced Materials</i> , 2010 , 22, 419-23	24	144
192	Stenciling graphene, carbon nanotubes, and fullerenes using elastomeric lift-off membranes. <i>Advanced Materials</i> , 2010 , 22, 897-901	24	18
191	Full elastic tensor of a crystal of the superhard compound ReB2. <i>Acta Materialia</i> , 2010 , 58, 1530-1535	8.4	57
190	Graphene, a promising transparent conductor. <i>Materials Today</i> , 2010 , 13, 52-59	21.8	407
189	High Temperature Thermoelectric Properties of Nano-Bulk Silicon and Silicon Germanium. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1166, 4		7

(2009-2009)

188	Nanostructured Bulk Silicon as an Effective Thermoelectric Material. <i>Advanced Functional Materials</i> , 2009 , 19, 2445-2452	15.6	419
187	Advancements in the Search for Superhard Ultra-Incompressible Metal Borides. <i>Advanced Functional Materials</i> , 2009 , 19, 3519-3533	15.6	259
186	One-Dimensional Conducting Polymer Nanostructures: Bulk Synthesis and Applications. <i>Advanced Materials</i> , 2009 , 21, 1487-1499	24	422
185	Soft Transfer Printing of Chemically Converted Graphene. <i>Advanced Materials</i> , 2009 , 21, 2098-2102	24	166
184	Shear Modulus of Polycrystalline Rhenium Diboride Determined from Surface Brillouin Spectroscopy. <i>Advanced Materials</i> , 2009 , 21, 4284-4286	24	22
183	Fabrication of monolithic microstructures from polyaniline nanofibers. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2009 , 162, 111-115	3.1	10
182	Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. <i>Journal of Nanoparticle Research</i> , 2009 , 11, 1441-1452	2.3	123
181	Polyaniline nanofiber composites with amines: Novel materials for phosgene detection. <i>Nano Research</i> , 2009 , 2, 135-142	10	72
180	High-throughput solution processing of large-scale graphene. <i>Nature Nanotechnology</i> , 2009 , 4, 25-9	28.7	1778
179	Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64°LYX LiNbO3 for H2 sensing. <i>Sensors and Actuators B: Chemical</i> , 2009 , 138, 85-89	8.5	46
178	Layered Surface Acoustic Wave Hydrogen Sensor Based on Polyethylaniline Nanofibers. <i>Procedia Chemistry</i> , 2009 , 1, 220-223		3
177	Graphene-like nano-sheets for surface acoustic wave gas sensor applications. <i>Chemical Physics Letters</i> , 2009 , 467, 344-347	2.5	321
176	Practical chemical sensors from chemically derived graphene. ACS Nano, 2009, 3, 301-6	16.7	1215
175	Solid-state NMR of polyaniline nanofibers. <i>Synthetic Metals</i> , 2009 , 159, 710-714	3.6	23
174	Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. <i>Accounts of Chemical Research</i> , 2009 , 42, 135-45	24.3	832
173	Polyaniline Nanofiber Metal Salt Composite Materials for Arsine Detection. <i>Chemistry of Materials</i> , 2009 , 21, 3056-3061	9.6	23
172	Lithium intercalation and exfoliation of layered bismuth selenide and bismuth telluride. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2588		58
171	Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. <i>Nano Letters</i> , 2009 , 9, 1949-55	11.5	899

170	Template-Free Growth of Aligned Bundles of Conducting Polymer Nanowires. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10346-10349	3.8	26
169	Hydrogen Detection by Polyaniline Nanofibers on Gold and Platinum Electrodes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 6444-6449	3.8	62
168	Incompressibility and Hardness of Solid Solution Transition Metal Diborides: Os1⊠RuxB2. <i>Chemistry of Materials</i> , 2009 , 21, 1915-1921	9.6	59
167	Chemically induced folding of single and bilayer graphene. Chemical Communications, 2009, 6285-7	5.8	24
166	Processable aqueous dispersions of graphene nanosheets. <i>Nature Nanotechnology</i> , 2008 , 3, 101-5	28.7	7729
165	Polyaniline nanofibers as a novel electrode material for fault-tolerant dielectric elastomer actuators 2008 ,		10
164	Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano, 2008, 2, 1841	-8 16.7	146
163	Construction of a Polyaniline Nanofiber Gas Sensor. <i>Journal of Chemical Education</i> , 2008 , 85, 1102	2.4	38
162	Preparation and properties of metallic, superhard rhenium diboride crystals. <i>Journal of the American Chemical Society</i> , 2008 , 130, 16953-8	16.4	109
161	A polyaniline/WO3 nanofiber composite-based ZnO/64ºYX LiNbO3 SAW hydrogen gas sensor. <i>Synthetic Metals</i> , 2008 , 158, 29-32	3.6	71
160	Materials science. Graphene-based materials. <i>Science</i> , 2008 , 320, 1170-1	33.3	1257
159	Substituted Polyaniline Nanofibers Produced via Rapid Initiated Polymerization. <i>Macromolecules</i> , 2008 , 41, 7405-7410	5.5	76
158	Conductometric Hydrogen Gas Sensor Based on Polypyrrole Nanofibers. <i>IEEE Sensors Journal</i> , 2008 , 8, 365-370	4	54
157	A hydrogen gas sensor fabricated from polythiophene nanofibers deposited on a 36LYX LiTaO 3 layered surface acoustic wave transducer 2008 ,		1
156	Temperature dependent Raman spectroscopy of chemically derived graphene. <i>Applied Physics Letters</i> , 2008 , 93, 193119	3.4	42
155	Anisotropic mechanical properties of ultra-incompressible, hard osmium diboride. <i>Journal of Materials Research</i> , 2008 , 23, 1797-1801	2.5	48
154	Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2. <i>Applied Physics Letters</i> , 2008 , 92, 261904	3.4	161
153	Polypyrrole nanofiber surface acoustic wave gas sensors. <i>Sensors and Actuators B: Chemical</i> , 2008 , 134, 826-831	8.5	101

152	Monolithic Actuators from Flash-Welded Polyaniline Nanofibers. Advanced Materials, 2008, 20, 155-158	3 24	154
151	How nucleation affects the aggregation of nanoparticles. <i>Journal of Materials Chemistry</i> , 2007 , 17, 2279	9	72
150	Charge transfer effect in the polyaniline-gold nanoparticle memory system. <i>Applied Physics Letters</i> , 2007 , 90, 053101	3.4	154
149	Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7251-4	16.4	390
148	A Template-Free Route to Polypyrrole Nanofibers. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 22	8 9 - 8 29	93 82
147	Microwave exfoliation of a graphite intercalation compound. <i>Carbon</i> , 2007 , 45, 1367-1369	10.4	94
146	Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite. <i>Carbon</i> , 2007 , 45, 1578-1582	10.4	45
145	Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. <i>Sensors and Actuators A: Physical</i> , 2007 , 139, 53-57	3.9	118
144	Detection of Toxic Chemicals for Homeland Security Using Polyaniline Nanofibers. <i>ACS Symposium Series</i> , 2007 , 101-115	0.4	6
143	Metathetical Precursor Route to Molybdenum Disulfide. <i>Inorganic Syntheses</i> , 2007 , 33-37		3
142	Nanocomposites to Enhance Zt in Thermoelectrics. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		14
141	Hydrogen gas sensor fabricated from polyanisidine nanofibers deposited on 36ºYX LiTaO 3 layered surface acoustic wave transducer 2007 ,		1
140	A chemical route to graphene for device applications. <i>Nano Letters</i> , 2007 , 7, 3394-8	11.5	1734
139	Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. <i>Science</i> , 2007 , 316, 436-9	33.3	646
138	Polyaniline Nanofiber Based Surface Acoustic Wave Gas SensorsEffect of Nanofiber Diameter on \$hbox{H}_{2}\$ Response. <i>IEEE Sensors Journal</i> , 2007 , 7, 213-218	4	68
137	Design of hard crystals. <i>International Journal of Refractory Metals and Hard Materials</i> , 2006 , 24, 1-5	4.1	124
136	. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 2006 , 22, 12-21		37
135	Nanocomposites of Polyaniline/Poly(2-methoxyaniline-5-sulfonic acid). <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1995-2000	4.8	37

134	Enhanced solid-state metathesis routes to carbon nanotubes. <i>Inorganic Chemistry</i> , 2006 , 45, 4243-6	5.1	12
133	Microwave initiated solid-state metathesis routes to Li2SiN2. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1318		18
132	Hydrogen sensors based on conductivity changes in polyaniline nanofibers. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 22266-70	3.4	213
131	A layered surface acoustic wave gas sensor based on a polyaniline/In2O3nanofibre composite. <i>Nanotechnology</i> , 2006 , 17, 4488-4492	3.4	184
130	A Room Temperature Polyaniline/SnO2 Nanofiber Composite Based Layered ZnO/64\(^1\)YX LiNbO3 SAW Hydrogen Gas Sensor 2006 ,		1
129	Shape and aggregation control of nanoparticles: not shaken, not stirred. <i>Journal of the American Chemical Society</i> , 2006 , 128, 968-75	16.4	437
128	A general synthetic route to nanofibers of polyaniline derivatives. <i>Chemical Communications</i> , 2006 , 391	5 5 7 8	69
127	The intrinsic nanofibrillar morphology of polyaniline. Chemical Communications, 2006, 367-76	5.8	341
126	Direct electrical measurement of the conversion of metal acetates to metal sulfides by hydrogen sulfide. <i>Inorganic Chemistry</i> , 2006 , 45, 10467-71	5.1	26
125	Mechanochemical Route to the Conducting Polymer Polyaniline. <i>Macromolecules</i> , 2005 , 38, 317-321	5.5	138
124	Osmium diboride, an ultra-incompressible, hard material. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7264-5	16.4	395
123	A Solid-State Metathesis Route to MgSiN2. <i>Chemistry of Materials</i> , 2005 , 17, 2155-2161	9.6	19
122	Hydrazine Detection by Polyaniline Using Fluorinated Alcohol Additives. <i>Chemistry of Materials</i> , 2005 , 17, 1256-1260	9.6	141
121	Processable stabilizer-free polyaniline nanofiber aqueous colloids. <i>Chemical Communications</i> , 2005 , 328	3 65 . 8	134
120	Polyaniline nanofiber/gold nanoparticle nonvolatile memory. <i>Nano Letters</i> , 2005 , 5, 1077-80	11.5	760
119	Intercalation and exfoliation routes to graphite nanoplatelets. <i>Journal of Materials Chemistry</i> , 2005 , 15, 974		342
118	Materials science. Designing superhard materials. <i>Science</i> , 2005 , 308, 1268-9	33.3	57°
117	Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers. <i>Advanced Materials</i> , 2005 , 17, 77-80	24	192

116	Osmium Diboride, an Ultra-Incompressible, Hard Material ChemInform, 2005, 36, no		2
115	Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. <i>Small</i> , 2005 , 1, 624-7	11	192
114	Polymeric nanocomposite for memory application 2005 , 5940, 254		1
113	Flash welding of conducting polymer nanofibres. <i>Nature Materials</i> , 2004 , 3, 783-6	27	2 10
112	Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 5817-21	16.4	605
111	Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study. <i>Angewandte Chemie</i> , 2004 , 116, 5941-5945	3.6	150
110	Controlling Surface Area of Titanium Nitride Using Metathesis Reactions ChemInform, 2004, 35, no		1
109	Nanostructured polyaniline sensors. <i>Chemistry - A European Journal</i> , 2004 , 10, 1314-9	4.8	458
108	A general chemical route to polyaniline nanofibers. <i>Journal of the American Chemical Society</i> , 2004 , 126, 851-5	16.4	1227
107	Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms. <i>Nano Letters</i> , 2004 , 4, 491-4	196 1.5	936
107	Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms. <i>Nano Letters</i> , 2004 , 4, 491-40. A chemical route to carbon nanoscrolls. <i>Science</i> , 2003 , 299, 1361	33.3	936
		33.3	
106	A chemical route to carbon nanoscrolls. <i>Science</i> , 2003 , 299, 1361 Polyaniline nanofibers: facile synthesis and chemical sensors. <i>Journal of the American Chemical</i>	33.3	636
106	A chemical route to carbon nanoscrolls. <i>Science</i> , 2003 , 299, 1361 Polyaniline nanofibers: facile synthesis and chemical sensors. <i>Journal of the American Chemical Society</i> , 2003 , 125, 314-5 Enantioselective Discrimination of D- and L-Phenylalanine by Chiral Polyaniline Thin Films. <i>Advanced</i>	33.3	636
106	A chemical route to carbon nanoscrolls. <i>Science</i> , 2003 , 299, 1361 Polyaniline nanofibers: facile synthesis and chemical sensors. <i>Journal of the American Chemical Society</i> , 2003 , 125, 314-5 Enantioselective Discrimination of D- and L-Phenylalanine by Chiral Polyaniline Thin Films. <i>Advanced Materials</i> , 2003 , 15, 1158-1161	33·3 16.4 24	636 1504 95
106 105 104	A chemical route to carbon nanoscrolls. <i>Science</i> , 2003 , 299, 1361 Polyaniline nanofibers: facile synthesis and chemical sensors. <i>Journal of the American Chemical Society</i> , 2003 , 125, 314-5 Enantioselective Discrimination of D- and L-Phenylalanine by Chiral Polyaniline Thin Films. <i>Advanced Materials</i> , 2003 , 15, 1158-1161 Rapid Solid-State Synthesis of Titanium Aluminides. <i>Chemistry of Materials</i> , 2003 , 15, 3286-3293 Controlling Surface Area of Titanium Nitride Using Metathesis Reactions. <i>Chemistry of Materials</i> ,	33·3 16.4 24 9.6	636 1504 95 24
106 105 104 103	A chemical route to carbon nanoscrolls. <i>Science</i> , 2003 , 299, 1361 Polyaniline nanofibers: facile synthesis and chemical sensors. <i>Journal of the American Chemical Society</i> , 2003 , 125, 314-5 Enantioselective Discrimination of D- and L-Phenylalanine by Chiral Polyaniline Thin Films. <i>Advanced Materials</i> , 2003 , 15, 1158-1161 Rapid Solid-State Synthesis of Titanium Aluminides. <i>Chemistry of Materials</i> , 2003 , 15, 3286-3293 Controlling Surface Area of Titanium Nitride Using Metathesis Reactions. <i>Chemistry of Materials</i> , 2003 , 15, 4431-4435	33·3 16.4 24 9.6 9.6	636 1504 95 24

98	Rapid Synthesis of Carbon Nanotubes by Solid-State Metathesis Reactions. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1921-1924	3.4	31
97	Structural study of chiral camphorsulfonic acid doped polyaniline. <i>Synthetic Metals</i> , 2001 , 119, 403-404	3.6	14
96	Gas, liquid and enantiomeric separations using polyaniline. Synthetic Metals, 2001, 125, 65-71	3.6	52
95	Rapid, energetic metathesis routes to crystalline metastable phases of zirconium and hafnium dioxide. <i>Journal of Materials Chemistry</i> , 2001 , 11, 1951-1956		34
94	Rapid solid-state synthesis of tantalum, chromium, and molybdenum nitrides. <i>Inorganic Chemistry</i> , 2001 , 40, 2240-5	5.1	43
93	Thermal Control of Metathesis Reactions Producing GaN and InN [®] Journal of Physical Chemistry B, 2001 , 105, 11922-11927	3.4	33
92	Pervaporation studies with polyaniline membranes and blends. <i>Journal of Membrane Science</i> , 2000 , 174, 161-176	9.6	45
91	Self-propagating metathesis routes to metastable group 4 phosphides. <i>Inorganic Chemistry</i> , 2000 , 39, 3243-6	5.1	39
90	A chiral recognition polymer based on polyaniline. Synthetic Metals, 1999, 101, 44-47	3.6	79
89	The pervaporation of ethanol/water feeds with polyaniline membranes and blends. <i>Synthetic Metals</i> , 1999 , 102, 1311-1312	3.6	20
88	Rapid Synthesis of Crystalline Gallium Nitride from Solid Precursors at Atmospheric Pressure. <i>Chemistry of Materials</i> , 1999 , 11, 2299-2301	9.6	29
87	Polyaniline Membranes for Pervaporation of Carboxylic Acids and Water. <i>Macromolecules</i> , 1998 , 31, 545	5 6. 546	474
86	Conductivity and magnetoconductivity of polyaniline films implanted with and ions near the critical regime of the metal-insulator transition. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, 4867-4875	1.8	5
85	Solid-state metathesis reactions under pressure: A rapid route to crystalline gallium nitride. <i>Applied Physics Letters</i> , 1998 , 72, 596-598	3.4	32
84	The Synthesis of Crystalline Gallium Nitride Using Solid-State Metathesis Reactions at High Pressures <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 1998 , 7, 1040-1042	0	2
83	A Sol-Gel Solid Electrolyte with High Lithium Ion Conductivity. <i>Chemistry of Materials</i> , 1997 , 9, 1004-101	1 9.6	46
82	Chemical synthesis and characterization of fluoro-substituted polyanilines. <i>Synthetic Metals</i> , 1997 , 84, 95-96	3.6	41
81	The influence of weak localization and coulomb interaction on the low temperature resistance and magnetoresistance of ion implanted metallic polyaniline films. <i>Synthetic Metals</i> , 1997 , 84, 769-771	3.6	5

80	Permselectivity and temperature-dependent permeability of polyaniline membranes. <i>Synthetic Metals</i> , 1997 , 84, 799-800	3.6	11
79	Polyaniline/polyimide blends for pervaporation and gas separation studies. <i>Synthetic Metals</i> , 1997 , 84, 801-802	3.6	36
78	Anhydrous Halogen Acid Interaction with Polyaniline Membranes: A Gas Permeability Study. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 8425-8429		13
77	Synthesis of Refractory Ceramics via Rapid Metathesis Reactions between Solid-State Precursors. <i>Chemistry of Materials</i> , 1996 , 8, 333-343	9.6	193
76	Intercalation of hydrazines in lead iodide. <i>Journal of Physics and Chemistry of Solids</i> , 1996 , 57, 1153-115	83.9	16
75	Transport properties of ion-implanted and chemically doped polyaniline films. <i>Physical Review B</i> , 1996 , 54, 11638-11643	3.3	31
74	High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. <i>Physical Review B</i> , 1995 , 51, 12149-12156	3.3	213
73	Rapid synthesis of transition-metal borides by solid-state metathesis. <i>Journal of Materials Research</i> , 1995 , 10, 353-361	2.5	56
72	Thermal Properties of Polyaniline and Poly(aniline-co-o-ethylaniline). <i>Macromolecules</i> , 1995 , 28, 6522-6	553.75	136
71	Materials Synthesis Via Solid-State Metathesis Reactions. <i>Comments on Inorganic Chemistry</i> , 1995 , 16, 313-337	3.9	25
70	Electrical Properties of Ion Implanted and Chemically Doped Polyaniline Films. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 413, 609		
69	Rapid Solid-State Synthesis of Refractory Nitrides. <i>Inorganic Chemistry</i> , 1994 , 33, 5693-5700	5.1	113
68	Optical properties of the alkali-metal-doped superconducting fullerenes: K3C60 and Rb3C60. <i>Physical Review B</i> , 1994 , 49, 7012-7025	3.3	79
67	Rapid Solid-State-Precursor Synthesis of Crystalline Boron Nitride. <i>Inorganic Chemistry</i> , 1994 , 33, 3210-	33:1:1	38
66	Metathetical Synthesis of Binary and Ternary Antiferromagnetic Gadolinium Pnictides (P, As, and Sb). <i>Inorganic Chemistry</i> , 1994 , 33, 5701-5707	5.1	25
65	Solid-solution rubidium/potassium mixed-metal fullerides. <i>Synthetic Metals</i> , 1993 , 56, 3160-3166	3.6	1
64	High-quality mixed-transition-metal dichalcogenides from solid-state exchange reactions. <i>Inorganic Chemistry</i> , 1993 , 32, 6084-6087	5.1	13
63	Synthesis of III-V semiconductors by solid-state metathesis. <i>Inorganic Chemistry</i> , 1993 , 32, 2745-2752	5.1	48

62	Morphological modification of polyaniline films for the separation of gases. <i>Synthetic Metals</i> , 1993 , 57, 3655-3660	3.6	29
61	Polyaniline capacitors. <i>Synthetic Metals</i> , 1993 , 57, 4047-4052	3.6	30
60	Divalent cation dopants for polyparaphenylene. Synthetic Metals, 1993, 55, 930-935	3.6	4
59	Phases, kinetics and structure of alkali-C60 compounds: preparation of Rb3- and (Rb3MKx)-C60 superconductors. <i>Synthetic Metals</i> , 1993 , 59, 307-316	3.6	1
58	Partial separation of fullerenes by gradient sublimation. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 10	0097-10)1 @ \$
57	Non-Korringa 13 C Nuclear Relaxation in the Normal State of the K 3 C 60 Superconductor. <i>Europhysics Letters</i> , 1993 , 23, 63-69	1.6	35
56	Synthesis of High-Temperature Silicides Via Rapid Solid-State Metathesis. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 322, 133		4
55	Rapid Solid-State Precursor Synthesis of Non-Oxide Ceramics. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 327, 227		
54	Quantitative evaluation of gallium phosphide samples prepared from rapid solid state metathesis. <i>Analytica Chimica Acta</i> , 1993 , 283, 987-995	6.6	4
53	Characterization of solution-synthesized CdTe and HgTe. <i>Applied Physics A: Materials Science and Processing</i> , 1993 , 56, 317-321	2.6	13
52	Rapid solid state metathesis reactions for the synthesis of copper oxide and other metal oxides. <i>Materials Research Bulletin</i> , 1993 , 28, 893-900	5.1	18
51	Normal-State Magnetic Properties of K 3 C 60. <i>Europhysics Letters</i> , 1992 , 18, 79-84	1.6	76
50	Solution Synthesis and Photoluminescence Studies of Small Crystallites of Cadmium Telluride. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 272, 229		7
49	Pressure and field dependence of superconductivity in Rb3C60. <i>Physical Review Letters</i> , 1992 , 68, 1228	3-1 /2 / 3 /1	177
48	Measurements of the upper critical field of K3C60 and Rb3C60 powders to 60 T. <i>Physical Review B</i> , 1992 , 46, 14936-14939	3.3	26
47	Electrical resistivity of K3C60. <i>Physical Review B</i> , 1992 , 46, 11247-11249	3.3	30
46	Upper-critical-field-temperature phase diagram of alkali-metal-intercalated C60 superconductors. <i>Physical Review B</i> , 1992 , 46, 5880-5882	3.3	32
45	From Ceramics to Superconductors: Rapid Materials Synthesis by Solid-State Metathesis Reactions. Materials Research Society Symposia Proceedings, 1992, 271, 169		4

44	Structure and properties of superconducting and nonsuperconducting alkali-metal fullerides axc60 (A = Na, K, Rb, or Cs). <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 59, 389-397		1
43	Endohedral rare-earth fullerene complexes. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 6869-6871		112
42	Structure of Rb:C60 compounds. <i>Physical Review B</i> , 1992 , 45, 543-546	3.3	111
41	Optical response of the superconducting state of K3C60 and Rb3C60. <i>Physical Review Letters</i> , 1992 , 69, 2987-2990	7.4	72
40	Electrodynamic response of Rb3C60. <i>Physical Review B</i> , 1992 , 46, 11250-11253	3.3	42
39	Giant vibrational resonances in A6C60 compounds. <i>Physical Review B</i> , 1992 , 46, 1937-1940	3.3	90
38	Rapid synthesis of gallium phosphide and gallium arsenide from solid-state precursors. <i>Chemistry of Materials</i> , 1992 , 4, 9-11	9.6	36
37	Solid-state metathesis as a quick route to transition-metal mixed dichalcogenides. <i>Inorganic Chemistry</i> , 1992 , 31, 2127-2132	5.1	45
36	Rapid solid-state precursor synthesis of materials. <i>Science</i> , 1992 , 255, 1093-7	33.3	162
35	Solid-State Metathesis Routes to Layered Transition-Metal Dichalcogenides and Refractory Materials. <i>ACS Symposium Series</i> , 1992 , 369-383	0.4	7
35		0.4 2.5	7
	Materials. ACS Symposium Series, 1992, 369-383		
34	Materials. ACS Symposium Series, 1992, 369-383 Collisional probes and possible structures of La2C80. Chemical Physics Letters, 1992, 196, 337-342	2.5	43 174
34	Materials. ACS Symposium Series, 1992, 369-383 Collisional probes and possible structures of La2C80. Chemical Physics Letters, 1992, 196, 337-342 Pressure Dependence of Superconductivity in Single-Phase K3C60. Science, 1991, 252, 1829-31 Rapid solid-state synthesis of materials from molybdenum disulphide to refractories. Nature, 1991,	2.5	43 174
34 33 32	Materials. ACS Symposium Series, 1992, 369-383 Collisional probes and possible structures of La2C80. Chemical Physics Letters, 1992, 196, 337-342 Pressure Dependence of Superconductivity in Single-Phase K3C60. Science, 1991, 252, 1829-31 Rapid solid-state synthesis of materials from molybdenum disulphide to refractories. Nature, 1991, 349, 510-512	2.5 33.3 50.4	43 174 203
34 33 32 31	Materials. ACS Symposium Series, 1992, 369-383 Collisional probes and possible structures of La2C80. Chemical Physics Letters, 1992, 196, 337-342 Pressure Dependence of Superconductivity in Single-Phase K3C60. Science, 1991, 252, 1829-31 Rapid solid-state synthesis of materials from molybdenum disulphide to refractories. Nature, 1991, 349, 510-512 Structure of single-phase superconducting K3C60. Nature, 1991, 351, 632-634	2.5 33.3 50.4	43 174 203 676
34 33 32 31 30	Materials. ACS Symposium Series, 1992, 369-383 Collisional probes and possible structures of La2C80. Chemical Physics Letters, 1992, 196, 337-342 Pressure Dependence of Superconductivity in Single-Phase K3C60. Science, 1991, 252, 1829-31 Rapid solid-state synthesis of materials from molybdenum disulphide to refractories. Nature, 1991, 349, 510-512 Structure of single-phase superconducting K3C60. Nature, 1991, 351, 632-634 Magnetic-field penetration depth in K3C60 measured by muon spin relaxation. Nature, 1991, 352, 605-Lanthanum carbide (La2C80): a soluble dimetallofullerene. The Journal of Physical Chemistry, 1991,	2.5 33·3 50·4 50·4	43 174 203 676 206

26	Be2+, Mg2+ and Al3+ N-dopants for polyacetylene. Synthetic Metals, 1991, 41, 101-105	3.6	2
25	Alkali-Fulleride Superconductors: Synthesis, Composition, and Diamagnetic Shielding. <i>Science</i> , 1991 , 252, 1154-1157	33.3	680
24	Conjugated polymer films for gas separations. <i>Science</i> , 1991 , 252, 1412-5	33.3	359
23	Gas separation membranes: A novel application for conducting polymers. <i>Synthetic Metals</i> , 1991 , 41, 1151-1154	3.6	80
22	Spinless charge carriers in divalent cation doped polyacetylene. <i>Solid State Communications</i> , 1990 , 74, 1217-1220	1.6	5
21	Low-temperature precursor synthesis of crystalline nickel disulfide. <i>Inorganic Chemistry</i> , 1990 , 29, 2511	-25114	42
20	Variability of Mixed-Unit Chains in Metal-Containing Polymers 1990 , 87-99		
19	The application of electrochemistry to the measurement of selected intrinsic properties of polyacetylene. <i>Journal of Chemical Physics</i> , 1989 , 90, 5102-5107	3.9	20
18	Chemical reduction of polyacetylene with incorporation of divalent dopant cations. <i>Synthetic Metals</i> , 1989 , 28, D115-D125	3.6	6
17	Plastics that Conduct Electricity. <i>Scientific American</i> , 1988 , 258, 106-111	0.5	49
16	Boron-carbon-nitrogen materials of graphite-like structure. <i>Materials Research Bulletin</i> , 1987 , 22, 399-4	0 4 .1	229
15	The electrochemical reduction of polyacetylene with selected reducing agents. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1986 , 82, 2323		11
14	Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12	3.6	52
13	A novel graphite-like material of composition BC3, and nitrogendarbon graphites. <i>Journal of the Chemical Society Chemical Communications</i> , 1986 , 1758-1759		199
12	Anin situRaman Study after n-Doping of acis-Rich Polyacetylene Electrode in an Electrochemical Cell. <i>Japanese Journal of Applied Physics</i> , 1984 , 23, L883-L885	1.4	2
11	Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984 , 80, 2109		27
10	A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. <i>Journal of the Electrochemical Society</i> , 1984 , 131, 2744-2750	3.9	32
9	Electric Field Enhanced Diffusion in Trans - (CH) x. <i>Journal of the Electrochemical Society</i> , 1983 , 130, 571-574	3.9	27

LIST OF PUBLICATIONS

į	8	Electrochemical voltage spectroscopy of trans-(CH)x. <i>Physical Review B</i> , 1982 , 26, 2327-2330	3.3	32	
;	7	Synthesis of poorly crystallized platinum metal dichalcogenides. <i>Inorganic Chemistry</i> , 1981 , 20, 501-503	5.1	15	
(6	High-pressure phase transformation of platinum sulfide. <i>Inorganic Chemistry</i> , 1979 , 18, 727-729	5.1	19	
	5	Preparation and characterization of the platinum metal phosphides RuP2 and IrP2. <i>Materials Research Bulletin</i> , 1977 , 12, 1143-1147	5.1	22	
4	4	Gold Sunflower Microelectrode Arrays with Dendritic Nanostructures on the Lateral Surfaces for Antireflection and Surface-Enhanced Raman Scattering. <i>ACS Applied Nano Materials</i> ,	5.6	4	
	3	Superhard Materials: Advances in the Search and Synthesis of New Materials1-13			
2	2	Macro- and Nano-Porous 3D-Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors. <i>Advanced Functional Materials</i> ,2201544	15.6	3	
	1	Macroporous Graphene Frameworks for Sensing and Supercapacitor Applications. <i>Advanced Functional Materials</i> ,2203101	15.6	2	