Varinder K Aggarwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7345634/publications.pdf

Version: 2024-02-01

375 papers 25,571 citations

87 h-index 136 g-index

452 all docs

452 docs citations

452 times ranked

9943 citing authors

#	Article	IF	CITATIONS
1	Strainâ€Releaseâ€Driven Friedel–Crafts Spirocyclization of Azabicyclo[1.1.0]butanes. Angewandte Chemie, 2022, 134, .	1.6	4
2	Trappingâ€Enrichment Multiâ€dimensional Liquid Chromatography with Onâ€Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angewandte Chemie, 2022, 134, .	1.6	3
3	Trappingâ€Enrichment Multiâ€dimensional Liquid Chromatography with Onâ€Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
4	Lithiation–borylation methodology in the total synthesis of natural products. , 2022, 1, 117-126.		42
5	Selective Coupling of 1,2â€Bisâ€Boronic Esters at the more Substituted Site through Visibleâ€Light Activation of Electron Donor–Acceptor Complexes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
6	Sequential Photocatalytic Reactions for the Diastereoselective Synthesis of Cyclobutane Scaffolds. Organic Letters, 2022, 24, 137-141.	2.4	11
7	Strainâ€Releaseâ€Driven Friedel–Crafts Spirocyclization of Azabicyclo[1.1.0]butanes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
8	Stereocontrolled Total Synthesis of Bastimolide B Using Iterative Homologation of Boronic Esters. Journal of the American Chemical Society, 2022, 144, 7995-8001.	6.6	21
9	Diastereodivergent Synthesis of Cyclopentyl Boronic Esters Bearing Contiguous Fully Substituted Stereocenters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
10	Diastereodivergent Synthesis of Cyclopentyl Boronic Esters Bearing Contiguous Fully Substituted Stereocenters. Angewandte Chemie, 2022, 134, .	1.6	2
11	Dual Nickel/Photoredoxâ€Catalyzed Siteâ€Selective Crossâ€Coupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
12	αâ€Selective Ringâ€Opening Reactions of Bicyclo[1.1.0]butyl Boronic Ester with Nucleophiles. Angewandte Chemie, 2021, 133, 214-218.	1.6	8
13	Origin of stereocontrol in the Matteson reaction: Importance of attractive electrostatic interactions. Tetrahedron, 2021, 78, 131810.	1.0	9
14	αâ€Selective Ringâ€Opening Reactions of Bicyclo[1.1.0]butyl Boronic Ester with Nucleophiles. Angewandte Chemie - International Edition, 2021, 60, 212-216.	7.2	44
15	Divergent, Strainâ€Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angewandte Chemie - International Edition, 2021, 60, 7360-7365.	7.2	27
16	Divergent, Strainâ€Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angewandte Chemie, 2021, 133, 7436-7441.	1.6	9
17	Studies on the Lithiation, Borylation, and 1,2â€Metalate Rearrangement of <i>O</i> à€Cycloalkyl 2,4,6â€Triisopropylbenzoates. Angewandte Chemie - International Edition, 2021, 60, 11436-11441.	7.2	13
18	Strainâ€Release Driven Spirocyclization of Azabicyclo[1.1.0]butyl Ketones. Angewandte Chemie, 2021, 133, 11930-11935.	1.6	7

#	Article	IF	CITATIONS
19	Studies on the Lithiation, Borylation, and 1,2â∈Metalate Rearrangement of O â∈Cycloalkyl 2,4,6â∈Triisopropylbenzoates. Angewandte Chemie, 2021, 133, 11537-11542.	1.6	6
20	Diastereoselective Photoredox-Catalyzed [3 + 2] Cycloadditions of <i>N</i> Cyclopropylamines with Electron-Deficient Olefins. Organic Letters, 2021, 23, 3038-3042.	2.4	28
21	Strainâ€Release Driven Spirocyclization of Azabicyclo[1.1.0]butyl Ketones. Angewandte Chemie - International Edition, 2021, 60, 11824-11829.	7.2	19
22	Highly Diastereoselective Strain-Increase Allylborations: Rapid Access to Alkylidenecyclopropanes and Alkylidenecyclobutanes. Journal of the American Chemical Society, 2021, 143, 7462-7470.	6.6	23
23	Synthesis of Dysoxylactam A Using Iterative Homologation of Boronic Esters. Asian Journal of Organic Chemistry, 2021, 10, 2338-2341.	1.3	8
24	Conformationally Controlled Linear and Helical Hydrocarbons Bearing Extended Side Chains. Journal of the American Chemical Society, 2021, 143, 16682-16692.	6.6	7
25	Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene Sâ€Oxides with Boronic Esters. Angewandte Chemie - International Edition, 2021, 60, 25313-25317.	7.2	12
26	Direct Observation of Reactive Intermediates by Time-Resolved Spectroscopy Unravels the Mechanism of a Radical-Induced 1,2-Metalate Rearrangement. Journal of the American Chemical Society, 2021, 143, 17191-17199.	6.6	20
27	Ringâ€Opening Lithiation–Borylation of 2‶rifluoromethyl Oxirane: A Route to Versatile Tertiary Trifluoromethyl Boronic Esters. Angewandte Chemie - International Edition, 2020, 59, 1187-1191.	7.2	31
28	Visibleâ€Lightâ€Driven Strainâ€Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters. Angewandte Chemie - International Edition, 2020, 59, 6525-6528.	7.2	46
29	1,3â€Difunctionalizations of [1.1.1]Propellane via 1,2â€Metallate Rearrangements of Boronate Complexes. Angewandte Chemie - International Edition, 2020, 59, 3917-3921.	7.2	80
30	Visibleâ€Lightâ€Driven Strainâ€Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters. Angewandte Chemie, 2020, 132, 6587-6590.	1.6	18
31	Ringâ€Opening Lithiation–Borylation of 2‶rifluoromethyl Oxirane: A Route to Versatile Tertiary Trifluoromethyl Boronic Esters. Angewandte Chemie, 2020, 132, 1203-1207.	1.6	8
32	Decarboxylative Conjunctive Crossâ€coupling of Vinyl Boronic Esters using Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 4375-4379.	7.2	101
33	Prostaglandin Total Synthesis Enabled by the Organocatalytic Dimerization of Succinaldehyde. Chemical Record, 2020, 20, 936-947.	2.9	11
34	Total Synthesis of Thromboxane B ₂ via a Key Bicyclic Enal Intermediate. Organic Letters, 2020, 22, 6505-6509.	2.4	8
35	Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature, 2020, 586, 714-719.	13.7	124
36	Enantioselective Total Synthesis of (â^')â€Finerenone Using Asymmetric Transfer Hydrogenation. Angewandte Chemie, 2020, 132, 23307-23311.	1.6	1

#	Article	IF	CITATIONS
37	Enantioselective Total Synthesis of (â^')â€Finerenone Using Asymmetric Transfer Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 23107-23111.	7.2	9
38	Difunctionalization of C–C σ-Bonds Enabled by the Reaction of Bicyclo[1.1.0]butyl Boronate Complexes with Electrophiles: Reaction Development, Scope, and Stereochemical Origins. Journal of the American Chemical Society, 2020, 142, 16766-16775.	6.6	56
39	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie, 2020, 132, 22589-22593.	1.6	7
40	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie - International Edition, 2020, 59, 22403-22407.	7.2	32
41	Stuart Warren (24 Dec 1938–22 Mar 2020). Organic and Biomolecular Chemistry, 2020, 18, 7236-7237.	1.5	1
42	Photoinduced Fragmentation Borylation of Cyclic Alcohols and Hemiacetals. Organic Letters, 2020, 22, 7213-7218.	2.4	31
43	Synthesis, Stability, and Biological Studies of Fluorinated Analogues of Thromboxane A ₂ . ACS Central Science, 2020, 6, 995-1000.	5.3	9
44	Rücktitelbild: Visibleâ€Lightâ€Driven Strainâ€Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters (Angew. Chem. 16/2020). Angewandte Chemie, 2020, 132, 6694-6694.	1.6	0
45	Ring-Expansion Induced 1,2-Metalate Rearrangements: Highly Diastereoselective Synthesis of Cyclobutyl Boronic Esters. Journal of the American Chemical Society, 2020, 142, 5515-5520.	6.6	41
46	Stereospecific 1,2â€Migrations of Boronate Complexes Induced by Electrophiles. Angewandte Chemie, 2020, 132, 17005-17018.	1.6	25
47	Iridium-Catalyzed Enantioselective Synthesis of α-Chiral Bicyclo[1.1.1]pentanes by 1,3-Difunctionalization of [1.1.1]Propellane. Organic Letters, 2020, 22, 5650-5655.	2.4	23
48	Stereospecific 1,2â€Migrations of Boronate Complexes Induced by Electrophiles. Angewandte Chemie - International Edition, 2020, 59, 16859-16872.	7.2	106
49	Decarboxylative Conjunctive Crossâ€coupling of Vinyl Boronic Esters using Metallaphotoredox Catalysis. Angewandte Chemie, 2020, 132, 4405-4409.	1.6	24
50	Divergent, Stereospecific Mono―and Difluoromethylation of Boronic Esters. Angewandte Chemie - International Edition, 2020, 59, 8502-8506.	7.2	38
51	Odd–even alternations in helical propensity of a homologous series of hydrocarbons. Nature Chemistry, 2020, 12, 475-480.	6.6	30
52	Divergent, Stereospecific Mono―and Difluoromethylation of Boronic Esters. Angewandte Chemie, 2020, 132, 8580-8584.	1.6	10
53	1,3â€Difunctionalizations of [1.1.1]Propellane via 1,2â€Metallate Rearrangements of Boronate Complexes. Angewandte Chemie, 2020, 132, 3945-3949.	1.6	25
54	The Bristol Synthesis Meeting - Fostering Creativity and Inspiration since 2001. European Journal of Organic Chemistry, 2020, 2020, 2308-2309.	1.2	0

#	Article	IF	CITATIONS
55	Vinylidene Homologation of Boronic Esters and its Application to the Synthesis of the Proposed Structure of Machillene. Angewandte Chemie - International Edition, 2019, 58, 15268-15272.	7.2	22
56	Photoinduced Deoxygenative Borylations of Aliphatic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 18830-18834.	7.2	103
57	Photoinduced Deoxygenative Borylations of Aliphatic Alcohols. Angewandte Chemie, 2019, 131, 19006-19010.	1.6	21
58	Vinylidene Homologation of Boronic Esters and its Application to the Synthesis of the Proposed Structure of Machillene. Angewandte Chemie, 2019, 131, 15412-15416.	1.6	6
59	1,2-Boron Shifts of \hat{I}^2 -Boryl Radicals Generated from Bis-boronic Esters Using Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 14104-14109.	6.6	81
60	Photoredoxâ€Catalyzed Cyclobutane Synthesis by a Deboronative Radical Addition–Polar Cyclization Cascade. Angewandte Chemie, 2019, 131, 3910-3914.	1.6	29
61	Photoredox atalyzed Cyclobutane Synthesis by a Deboronative Radical Addition–Polar Cyclization Cascade. Angewandte Chemie - International Edition, 2019, 58, 3870-3874.	7.2	96
62	Triphenylphosphine and sodium iodide: a new catalyst combination to rival precious metal complexes in visible light photoredox catalysis. Science China Chemistry, 2019, 62, 1083-1084.	4.2	15
63	Radical Addition to Strained Ïf-Bonds Enables the Stereocontrolled Synthesis of Cyclobutyl Boronic Esters. Journal of the American Chemical Society, 2019, 141, 9511-9515.	6.6	108
64	Revising the structure of a new eicosanoid from human platelets to 8,9–11,12-diepoxy-13-hydroxyeicosadienoic acid. Journal of Biological Chemistry, 2019, 294, 9225-9238.	1.6	3
65	Strain Release of Donor–Acceptor Cyclopropyl Boronate Complexes. Organic Letters, 2019, 21, 3412-3416.	2.4	22
66	Strain-Release-Driven Homologation of Boronic Esters: Application to the Modular Synthesis of Azetidines. Journal of the American Chemical Society, 2019, 141, 4573-4578.	6.6	107
67	Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron Transfer. Angewandte Chemie - International Edition, 2019, 58, 5697-5701.	7.2	250
68	Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron Transfer. Angewandte Chemie, 2019, 131, 5753-5757.	1.6	51
69	Total synthesis of (\hat{a}°) - \hat{l}_{\pm} -cyclopiazonic acid: a study in perseverance. Strategies and Tactics in Organic Synthesis, 2019, 14, 1-33.	0.1	2
70	Methylenespiro [2.3] hexanes via Nickel-Catalyzed Cyclopropanations with [1.1.1] Propellane. Journal of the American Chemical Society, 2019, 141, 20325-20334.	6.6	34
71	Complex Boron-Containing Molecules through a 1,2-Metalate Rearrangement/anti-S N 2′ Elimination/Cycloaddition Reaction Sequence. Synlett, 2019, 30, 449-453.	1.0	8
72	Carbopalladation of C–C σ-bonds enabled by strained boronate complexes. Nature Chemistry, 2019, 11, 117-122.	6.6	140

#	Article	IF	Citations
73	Enantiospecific Synthesis of <i>ortho</i> â€Substituted 1,1â€Diarylalkanes by a 1,2â€Metalate Rearrangement/ <i>anti</i> â€S _{<i>N</i>} 2′ Elimination/Rearomatizing Allylic Suzuki–Miyaura Reaction Sequence. Angewandte Chemie, 2019, 131, 1380-1384.	1.6	4
74	Enantiospecific Synthesis of <i>ortho</i> â€Substituted 1,1â€Diarylalkanes by a 1,2â€Metalate Rearrangement/ <i>anti</i> àâ€S _{<i>N</i>} 2′ Elimination/Rearomatizing Allylic Suzuki–Miyaura Reaction Sequence. Angewandte Chemie - International Edition, 2019, 58, 1366-1370.	7.2	18
7 5	CD1b Tetramers Identify T Cells that Recognize Natural and Synthetic Diacylated Sulfoglycolipids from Mycobacterium tuberculosis. Cell Chemical Biology, 2018, 25, 392-402.e14.	2.5	23
76	Enantiospecific Threeâ€Component Alkylation of Furan and Indole. Chemistry - A European Journal, 2018, 24, 4279-4282.	1.7	33
77	Visibleâ€Lightâ€Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γâ€Amino Boronic Esters. Angewandte Chemie, 2018, 130, 2177-2181.	1.6	44
78	Enantioselective Synthesis of the Cyclopiazonic Acid Family Using Sulfur Ylides. Angewandte Chemie - International Edition, 2018, 57, 1346-1350.	7.2	39
79	<i>ortho</i> â€Directing Chromium Arene Complexes as Efficient Mediators for Enantiospecific C(sp ^{)‰C(sp³) Crossâ€Coupling Reactions. Angewandte Chemie, 2018, 130, 1094-1098.}	1.6	6
80	Visibleâ€Lightâ€Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γâ€Amino Boronic Esters. Angewandte Chemie - International Edition, 2018, 57, 2155-2159.	7.2	112
81	Enantioselective Synthesis of the Cyclopiazonic Acid Family Using Sulfur Ylides. Angewandte Chemie, 2018, 130, 1360-1364.	1.6	5
82	Enantiodivergent Synthesis of Allenes by Pointâ€toâ€Axial Chirality Transfer. Angewandte Chemie - International Edition, 2018, 57, 8203-8208.	7.2	36
83	<i>ortho</i> â€Directing Chromium Arene Complexes as Efficient Mediators for Enantiospecific C(sp ²)‰C(sp ³) Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2018, 57, 1082-1086.	7.2	18
84	Stereocontrolled Synthesis of Polypropionate Fragments based on a Building Block Assembly Strategy using Lithiationâ∈Borylation Methodologies. Chemistry - A European Journal, 2018, 24, 730-735.	1.7	26
85	Investigation of the Deprotonative Generation and Borylation of Diamine-Ligated α-Lithiated Carbamates and Benzoates by in Situ IR spectroscopy. Journal of the American Chemical Society, 2018, 140, 14677-14686.	6.6	25
86	Synthesis of Functionalized Cyclopropanes from Carboxylic Acids by a Radical Addition–Polar Cyclization Cascade. Angewandte Chemie, 2018, 130, 15656-15660.	1.6	35
87	Chiral Aniline Synthesis via Stereospecific C(sp3)–C(sp2) Coupling of Boronic Esters with Aryl Hydrazines. Organic Letters, 2018, 20, 6144-6147.	2.4	11
88	Synthesis of Functionalized Cyclopropanes from Carboxylic Acids by a Radical Addition–Polar Cyclization Cascade. Angewandte Chemie - International Edition, 2018, 57, 15430-15434.	7.2	117
89	Reoptimization of the Organocatalyzed Double Aldol Domino Process to a Key Enal Intermediate and Its Application to the Total Synthesis of Δ ¹² â€Prostaglandin J ₃ . Chemistry - A European Journal, 2018, 24, 9542-9545.	1.7	32
90	Enantiodivergent Synthesis of Allenes by Pointâ€toâ€Axial Chirality Transfer. Angewandte Chemie, 2018, 130, 8335-8340.	1.6	13

#	Article	IF	CITATIONS
91	(â^')-Cytisine: Access to a stereochemically defined and functionally flexible piperidine scaffold. Organic and Biomolecular Chemistry, 2018, 16, 5823-5832.	1.5	7
92	Synthesis of Isothiocineole and Application in Multigram-Scale Sulfur Ylide Mediated Asymmetric Epoxidation and Aziridination. Synthesis, 2018, 50, 3337-3343.	1.2	9
93	Stereo- and Regiocontrolled Methylboration of Terminal Alkynes. Organic Letters, 2018, 20, 3136-3139.	2.4	18
94	Photoinduced Deaminative Borylation of Alkylamines. Journal of the American Chemical Society, 2018, 140, 10700-10704.	6.6	310
95	Enantiospecific Trifluoromethylâ€Radicalâ€Induced Threeâ€Component Coupling of Boronic Esters with Furans. Angewandte Chemie - International Edition, 2017, 56, 1810-1814.	7.2	56
96	Stereocontrolled Total Synthesis of (â^')‧temaphylline. Angewandte Chemie - International Edition, 2017, 56, 2127-2131.	7.2	75
97	Enantiospecific Trifluoromethylâ€Radicalâ€Induced Threeâ€Component Coupling of Boronic Esters with Furans. Angewandte Chemie, 2017, 129, 1836-1840.	1.6	26
98	Stereocontrolled Total Synthesis of (â^')â€Stemaphylline. Angewandte Chemie, 2017, 129, 2159-2163.	1.6	27
99	Selective uni- and bidirectional homologation of diborylmethane. Chemical Science, 2017, 8, 2898-2903.	3.7	64
100	Iterative assembly line synthesis of polypropionates with full stereocontrol. Nature Chemistry, 2017, 9, 896-902.	6.6	70
101	Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes. Journal of the American Chemical Society, 2017, 139, 5736-5739.	6.6	180
102	Conjunctive functionalization of vinyl boronate complexes with electrophiles: a diastereoselective three-component coupling. Chemical Communications, 2017, 53, 4922-4925.	2.2	55
103	Synthesis of Functionalized Alkenes by a Transition-Metal-Free Zweifel Coupling. Organic Letters, 2017, 19, 2762-2765.	2.4	77
104	Photoinduced decarboxylative borylation of carboxylic acids. Science, 2017, 357, 283-286.	6.0	523
105	Asymmetric Synthesis of Secondary and Tertiary Boronic Esters. Angewandte Chemie - International Edition, 2017, 56, 11700-11733.	7.2	232
106	Asymmetrische Synthese sekundÄrer und tertiÄrer BoronsÄureester. Angewandte Chemie, 2017, 129, 11860-11894.	1.6	70
107	Alkynyl Moiety for Triggering 1,2â€Metallate Shifts: Enantiospecific sp 2 –sp 3 Coupling of Boronic Esters with p â€Arylacetylenes. Angewandte Chemie - International Edition, 2017, 56, 9752-9756.	7.2	28
108	Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chemical Communications, 2017, 53, 5481-5494.	2.2	458

#	Article	IF	CITATIONS
109	Stereodivergent Olefination of Enantioenriched Boronic Esters. Angewandte Chemie, 2017, 129, 804-808.	1.6	31
110	Stereodivergent Olefination of Enantioenriched Boronic Esters. Angewandte Chemie - International Edition, 2017, 56, 786-790.	7.2	68
111	Stereospecific Allylic Functionalization: The Reactions of Allylboronate Complexes with Electrophiles. Journal of the American Chemical Society, 2017, 139, 15324-15327.	6.6	56
112	Synthesis of Alfaprostol and PGF $<$ sub $>2\hat{1}\pmsub> through 1,4-Addition of an Alkyne to an Enal Intermediate as the Key Step. Organic Letters, 2017, 19, 6008-6011.$	2.4	22
113	Asymmetric Synthesis of Tertiary Alcohols and Thiols via Nonstabilized Tertiary αâ€Oxy―and αâ€Thioâ€Substituted Organolithium Species. Angewandte Chemie - International Edition, 2017, 56, 10835-10839.	7.2	15
114	Asymmetric Synthesis of Tertiary Alcohols and Thiols via Nonstabilized Tertiary αâ€Oxy―and αâ€Thioâ€Substituted Organolithium Species. Angewandte Chemie, 2017, 129, 10975-10979.	1.6	1
115	Alkynyl Moiety for Triggering 1,2â€Metallate Shifts: Enantiospecific sp 2 –sp 3 Coupling of Boronic Esters with p â€Arylacetylenes. Angewandte Chemie, 2017, 129, 9884-9888.	1.6	14
116	α-Sulfinyl Benzoates as Precursors to Li and Mg Carbenoids for the Stereoselective Iterative Homologation of Boronic Esters. Journal of the American Chemical Society, 2017, 139, 11877-11886.	6.6	49
117	The Story behind "Synergy of Synthesis, Computation, and NMR Reveals Correct Baulamycin Structures― Biochemistry, 2017, 56, 6177-6178.	1.2	2
118	Enantiospecific sp ² –sp ³ Coupling of <i>ortho</i> ―and <i>para</i> â€Phenols with Secondary and Tertiary Boronic Esters. Angewandte Chemie - International Edition, 2017, 56, 16318-16322.	7.2	30
119	Enantiospecific sp ² –sp ³ Coupling of <i>ortho</i> à€•and <i>para</i> â€Phenols with Secondary and Tertiary Boronic Esters. Angewandte Chemie, 2017, 129, 16536-16540.	1.6	12
120	50 Years of Zweifel Olefination: A Transition-Metal-Free Coupling. Synthesis, 2017, 49, 3323-3336.	1.2	156
121	Enantioselective Rhodium(III)-Catalyzed Markovnikov Hydroboration of Unactivated Terminal Alkenes. Journal of the American Chemical Society, 2017, 139, 9148-9151.	6.6	101
122	Enantiospecific Synthesis of <i>ortho</i> -Substituted Benzylic Boronic Esters by a 1,2-Metalate Rearrangement/1,3-Borotropic Shift Sequence. Journal of the American Chemical Society, 2017, 139, 9519-9522.	6.6	51
123	Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature, 2017, 547, 436-440.	13.7	104
124	Development of Enantiospecific Coupling of Secondary and Tertiary Boronic Esters with Aromatic Compounds. Journal of the American Chemical Society, 2016, 138, 9521-9532.	6.6	131
125	Short Enantioselective Total Synthesis of Tatananâ€A and 3â€ <i>epi</i> fi>â€₹atananâ€A Using Assemblyâ€Line Synthesis. Angewandte Chemie, 2016, 128, 16152-16156.	1.6	19
126	Tandem Allylboration–Prins Reaction for the Rapid Construction of Substituted Tetrahydropyrans: Application to the Total Synthesis of (â°)â€Clavosolideâ€A. Angewandte Chemie - International Edition, 2016, 55, 2498-2502.	7.2	40

#	Article	IF	CITATIONS
127	Enantiospecific Alkynylation of Alkylboronic Esters. Angewandte Chemie - International Edition, 2016, 55, 4270-4274.	7.2	66
128	Synthesis of 3-Aryl-1-aminopropane Derivatives: Lithiation–BorylÂation–Ring-Opening of Azetidinium Ions. Synthesis, 2016, 48, 3241-3253.	1.2	31
129	Short Enantioselective Total Synthesis of Tatananâ€A and 3â€ <i>epi</i> ê₹atananâ€A Using Assemblyâ€Line Synthesis. Angewandte Chemie - International Edition, 2016, 55, 15920-15924.	7.2	48
130	Regio―and Stereoselective Homologation of 1,2â€Bis(Boronic Esters): Stereocontrolled Synthesis of 1,3â€Diols and Sch 725674. Angewandte Chemie - International Edition, 2016, 55, 14663-14667.	7.2	54
131	Regio―and Stereoselective Homologation of 1,2â€Bis(Boronic Esters): Stereocontrolled Synthesis of 1,3â€Diols and Sch 725674. Angewandte Chemie, 2016, 128, 14883-14887.	1.6	20
132	Tandem Allylboration–Prins Reaction for the Rapid Construction of Substituted Tetrahydropyrans: Application to the Total Synthesis of (â^')â€Clavosolideâ€A. Angewandte Chemie, 2016, 128, 2544-2548.	1.6	11
133	Enantiospecific Alkynylation of Alkylboronic Esters. Angewandte Chemie, 2016, 128, 4342-4346.	1.6	33
134	Activation of the S _N 2 Reaction by Adjacent π Systems: The Critical Role of Electrostatic Interactions and of Dissociative Character. Journal of the American Chemical Society, 2016, 138, 734-737.	6.6	22
135	Short Convergent Synthesis of the Mycolactone Core Through Lithiation–Borylation Homologations. Chemistry - A European Journal, 2015, 21, 13900-13903.	1.7	28
136	Reagent-Controlled Lithiation–Borylation. Topics in Organometallic Chemistry, 2015, , 271-295.	0.7	33
137	Stereospecific Coupling of Boronic Esters with N-Heteroaromatic Compounds. Journal of the American Chemical Society, 2015, 137, 10958-10961.	6.6	131
138	Toward Ideality: The Synthesis of (+)-Kalkitoxin and (+)-Hydroxyphthioceranic Acid by Assembly-Line Synthesis. Journal of the American Chemical Society, 2015, 137, 4398-4403.	6.6	127
139	Synthesis of Prostaglandin Analogues, Latanoprost and Bimatoprost, Using Organocatalysis via a Key Bicyclic Enal Intermediate. Organic Letters, 2015, 17, 504-507.	2.4	45
140	Synthesis of Enantioenriched Alkylfluorides by the Fluorination of Boronate Complexes. Journal of the American Chemical Society, 2015, 137, 10100-10103.	6.6	83
141	Enantioselective installation of adjacent tertiary benzylic stereocentres using lithiation–borylation–protodeboronation methodology. Application to the synthesis of bifluranol and fluorohexestrol. Chemical Science, 2015, 6, 3718-3723.	3.7	48
142	Structure and Reactivity of Boron-Ate Complexes Derived from Primary and Secondary Boronic Esters. Organic Letters, 2015, 17, 2614-2617.	2.4	34
143	Synthesis of 6- and 7-Membered <i>N</i> -Heterocycles Using α-Phenylvinylsulfonium Salts. Organic Letters, 2015, 17, 5044-5047.	2.4	69
144	Palladium-Catalyzed Reactions of Allylic Boronic Esters with Nucleophiles: Novel Umpolung Reactivity. Synlett, 2015, 26, 1567-1572.	1.0	3

#	Article	lF	Citations
145	Stereospecific Couplings of Secondary and Tertiary Boronic Esters. Angewandte Chemie - International Edition, 2015, 54, 1082-1096.	7.2	276
146	Construction of Multiple, Contiguous Quaternary Stereocenters in Acyclic Molecules by Lithiation-Borylation. Journal of the American Chemical Society, 2014, 136, 17370-17373.	6.6	85
147	Stereocontrolled Synthesis of 1,5â€Stereogenic Centers through Threeâ€Carbon Homologation of Boronic Esters. Angewandte Chemie - International Edition, 2014, 53, 9846-9850.	7.2	16
148	Asymmetric addition of chiral boron-ate complexes to cyclic iminium ions. Chemical Science, 2014, 5, 602-607.	3.7	50
149	Short Stereoselective Synthesis of the <i>Phytophthora</i> Universal Mating Hormone α1 Using Lithiation/Borylation Reactions. Angewandte Chemie - International Edition, 2014, 53, 4382-4385.	7.2	23
150	Highly Selective Allylborations of Aldehydes Using α,αâ€Disubstituted Allylic Pinacol Boronic Esters. Angewandte Chemie - International Edition, 2014, 53, 6145-6149.	7.2	57
151	Stereocontrolled Synthesis of Adjacent Acyclic Quaternaryâ€Tertiary Motifs: Application to a Concise Total Synthesis of (â^')â€Filiformin. Angewandte Chemie - International Edition, 2014, 53, 5552-5555.	7.2	46
152	Stereocontrolled Synthesis of Adjacent Acyclic Quaternaryâ€Tertiary Motifs: Application to a Concise Total Synthesis of (â^')â€Filiformin. Angewandte Chemie, 2014, 126, 5658-5661.	1.6	17
153	Synthesis of α-Substituted Vinylsulfonium Salts and Their Application as Annulation Reagents in the Formation of Epoxide- and Cyclopropane-Fused Heterocycles. Journal of Organic Chemistry, 2014, 79, 10226-10239.	1.7	47
154	Homologation of Boronic Esters with Organolithium Compounds: A Computational Assessment of Mechanism. Journal of Organic Chemistry, 2014, 79, 12148-12158.	1.7	30
155	Stereospecific conversion of alcohols into pinacol boronic esters using lithiation–borylation methodology with pinacolborane. Chemical Communications, 2014, 50, 4053-4055.	2.2	38
156	Assembly-line synthesis of organic molecules with tailored shapes. Nature, 2014, 513, 183-188.	13.7	252
157	Lithiation–Borylation Methodology and Its Application in Synthesis. Accounts of Chemical Research, 2014, 47, 3174-3183.	7.6	333
158	Synthesis of hydroxyphthioceranic acid using a traceless lithiation–borylation–protodeboronation strategy. Nature Chemistry, 2014, 6, 810-814.	6.6	97
159	Highly Diastereoselective and Enantiospecific Allylation of Ketones and Imines Using Borinic Esters: Contiguous Quaternary Stereogenic Centers. Angewandte Chemie - International Edition, 2014, 53, 10992-10996.	7.2	123
160	Enantiospecific sp2–sp3 coupling of secondary and tertiary boronic esters. Nature Chemistry, 2014, 6, 584-589.	6.6	356
161	Practical and Highly Selective Sulfur Ylide-Mediated Asymmetric Epoxidations and Aziridinations Using a Cheap and Readily Available Chiral Sulfide: Extensive Studies To Map Out Scope, Limitations, and Rationalization of Diastereo- and Enantioselectivities. Journal of the American Chemical Society, 2013, 135, 11951-11966.	6.6	102
162	Concise Synthesis of (+)- <i>allo</i> -Kainic Acid <i>via</i> Mgl ₂ -Mediated Tandem Aziridine Ring Openingâ€"Formal [3 + 2] Cycloaddition. Organic Letters, 2013, 15, 4250-4253.	2.4	48

#	Article	IF	Citations
163	Efficient Synthesis of Cyclopropaneâ€Fused Heterocycles with Bromoethylsulfonium Salt. Chemistry - A European Journal, 2013, 19, 10827-10831.	1.7	38
164	Enantiospecific, Regioselective Crossâ€Coupling Reactions of Secondary Allylic Boronic Esters. Chemistry - A European Journal, 2013, 19, 17698-17701.	1.7	78
165	Synthesis of Enantioenriched Tertiary Boronic Esters by the Lithiation/Borylation of Secondary Alkyl Benzoates. Journal of the American Chemical Society, 2013, 135, 16054-16057.	6.6	87
166	Asymmetric Synthesis of 1-Heteroaryl-1-arylalkyl Tertiary Alcohols and 1-Pyridyl-1-arylethanes by Lithiation–Borylation Methodology. Organic Letters, 2013, 15, 1346-1349.	2.4	42
167	Stereoselective Total Synthesis of (+)â€Giganin and Its C10 Epimer by Using Lateâ€Stage Lithiation–Borylation Methodology. Angewandte Chemie - International Edition, 2013, 52, 2503-2506.	7.2	31
168	One-pot synthesis of 2,3,4,5,6-pentasubstituted tetrahydropyrans using lithiation–borylation, allylation and Prins cyclisation reactions. Tetrahedron Letters, 2013, 54, 49-51.	0.7	11
169	Highly Diastereo- and Enantioselective Allylboration of Aldehydes using α-Substituted Allyl/Crotyl Pinacol Boronic Esters via in Situ Generated Borinic Esters. Journal of the American Chemical Society, 2013, 135, 5316-5319.	6.6	121
170	An Efficient Synthesis of Azetidines with (2-Bromoethyl)sulfonium Triflate. Synthesis, 2012, 44, 1584-1590.	1.2	28
171	Enantioselective synthesis of (<i>R</i>)-tolterodine using lithiation/borylation–protodeboronation methodology. Canadian Journal of Chemistry, 2012, 90, 965-974.	0.6	16
172	Stereocontrolled asymmetric synthesis of syn-E-1,4-diol-2-enes using allyl boronates and its application in the total synthesis of solandelactone F. Organic and Biomolecular Chemistry, 2012, 10, 1795.	1.5	32
173	(2â€Bromoethyl)sulfonium Trifluoromethanesulfonates in Stereoselective Annulation Reactions for the Formation of Fused Bicyclic Epoxides and Aziridines. Helvetica Chimica Acta, 2012, 95, 2384-2398.	1.0	15
174	Diastereoselective Synthesis of CF3-Substituted, Epoxide-Fused Heterocycles with \hat{l}^2 -(Trifluoromethyl)vinylsulfonium Salts. Organic Letters, 2012, 14, 6370-6373.	2.4	49
175	Total Syntheses of Solandelactones E and F. Strategies and Tactics in Organic Synthesis, 2012, 8, 1-23.	0.1	3
176	Stereocontrolled organocatalytic synthesis of prostaglandin PGF2α in seven steps. Nature, 2012, 489, 278-281.	13.7	125
177	Enantioselective Synthesis and Crossâ€Coupling of Tertiary Propargylic Boronic Esters Using Lithiation–Borylation of Propargylic Carbamates. Angewandte Chemie - International Edition, 2012, 51, 11795-11799.	7.2	73
178	Diastereodivergent Synthesis of Trisubstituted Alkenes through Protodeboronation of Allylic Boronic Esters: Application to the Synthesis of the Californian Red Scale Beetle Pheromone. Angewandte Chemie - International Edition, 2012, 51, 12444-12448.	7.2	67
179	The total synthesis of (â^)-aplysin via a lithiation–borylation–propenylation sequence. Tetrahedron, 2012, 68, 7598-7604.	1.0	32
180	Application of the lithiation–borylation reaction to the rapid and enantioselective synthesis of the bisabolane family of sesquiterpenes. Chemical Communications, 2012, 48, 9230.	2.2	33

#	Article	IF	CITATIONS
181	Synthesis of Enantioenriched Tertiary Boronic Esters from Secondary Allylic Carbamates. Application to the Synthesis of C30 Botryococcene. Journal of the American Chemical Society, 2012, 134, 7570-7574.	6.6	94
182	Synthesis of <i>N</i> àêVinyloxazolidinones and Morpholines from Amino Alcohols and Vinylsulfonium Salts: Analysis of the Outcome's Dependence on the Nâ€Protecting Group by Nanospray Mass Spectrometry. European Journal of Organic Chemistry, 2012, 2012, 160-166.	1.2	22
183	Use of alkyl 2,4,6-triisopropylbenzoates in the asymmetric homologation of challenging boronic esters. Chemical Communications, 2011, 47, 12592.	2.2	89
184	Asymmetric Synthesis of Tertiary and Quaternary Allyl- and Crotylsilanes via the Borylation of Lithiated Carbamates. Organic Letters, 2011, 13, 1490-1493.	2.4	84
185	Enantioselective Syntheses of (+)-Sertraline and (+)-Indatraline Using Lithiation/Borylation–Protodeboronation Methodology. Organic Letters, 2011, 13, 5740-5743.	2.4	94
186	An Efficient Synthesis of Imidazolinium Salts Using Vinyl Sulfonium Salts. Organic Letters, 2011, 13, 3060-3063.	2.4	50
187	Total Synthesis of (+)-Erogorgiaene Using Lithiation–Borylation Methodology, and Stereoselective Synthesis of Each of Its Diastereoisomers. Journal of the American Chemical Society, 2011, 133, 16798-16801.	6.6	71
188	Ate Complexes of Secondary Boronic Esters as Chiral Organometallic-Type Nucleophiles for Asymmetric Synthesis. Journal of the American Chemical Society, 2011, 133, 16794-16797.	6.6	170
189	Palladium-Catalyzed Insertion of CO ₂ into Vinylaziridines: New Route to 5-Vinyloxazolidinones. Organic Letters, 2011, 13, 3454-3457.	2.4	97
190	Enantioenriched synthesis of Escitalopram using lithiation–borylation methodology. Tetrahedron, 2011, 67, 10082-10088.	1.0	19
191	Remote Chiral Induction in Vinyl Sulfonium Saltâ€Mediated Ring Expansion of Hemiaminals into Epoxideâ€Fused Azepines. Chemistry - an Asian Journal, 2011, 6, 372-375.	1.7	23
192	Sulfinamides as Highly Effective Amine Protecting Groups and Their Use in the Conversion of Amino Alcohols into Morpholines. European Journal of Organic Chemistry, 2011, 2011, 3156-3164.	1.2	37
193	Titelbild: Enantioselective Construction of Quaternary Stereogenic Centers from Tertiary Boronic Esters: Methodology and Applications (Angew. Chem. 16/2011). Angewandte Chemie, 2011, 123, 3655-3655.	1.6	0
194	Synthesis of Highly Enantioenriched Câ€Tertiary Amines From Boronic Esters: Application to the Synthesis of Igmesine. Angewandte Chemie - International Edition, 2011, 50, 1080-1083.	7.2	75
195	Enantioselective Construction of Quaternary Stereogenic Centers from Tertiary Boronic Esters: Methodology and Applications. Angewandte Chemie - International Edition, 2011, 50, 3760-3763.	7.2	189
196	Palladiumâ€Mediated Annulation of Vinyl Aziridines with Michael Acceptors: Stereocontrolled Synthesis of Substituted Pyrrolidines and Its Application in a Formal Synthesis of (â^)â€Î±â€Kainic Acid. Angewandte Chemie - International Edition, 2011, 50, 6370-6374.	7.2	116
197	Cover Picture: Enantioselective Construction of Quaternary Stereogenic Centers from Tertiary Boronic Esters: Methodology and Applications (Angew. Chem. Int. Ed. 16/2011). Angewandte Chemie - International Edition, 2011, 50, 3575-3575.	7.2	1
198	Highly Enantioselective Synthesis of Tertiary Boronic Esters and their Stereospecific Conversion to other Functional Groups and Quaternary Stereocentres. Chemistry - A European Journal, 2011, 17, 13124-13132.	1.7	168

#	Article	IF	CITATIONS
199	Synthesis of highly functionalized 2,5-disubstituted pyrrolidines via an aza-Morita–Baylis–Hillman-type reaction. Tetrahedron, 2010, 66, 6293-6299.	1.0	18
200	Benzylic Boron Reagents Behaving as Allylic Boron Reagents towards Aldehydes: A New Asymmetric Reaction Leading to Homoallylic Alcohols with Concomitant Dearomatisation. Chemistry - A European Journal, 2010, 16, 9741-9745.	1.7	15
201	Asymmetric Synthesis of Allylsilanes by the Borylation of Lithiated Carbamates: Formal Total Synthesis of (â°')â€Decarestrictineâ€D. Angewandte Chemie - International Edition, 2010, 49, 4264-4268.	7.2	84
202	Full Chirality Transfer in the Conversion of Secondary Alcohols into Tertiary Boronic Esters and Alcohols Using Lithiation–Borylation Reactions. Angewandte Chemie - International Edition, 2010, 49, 5142-5145.	7.2	130
203	Asymmetric Total Synthesis of Solandelactoneâ€E: Stereocontrolled Synthesis of the 2â€eneâ€1,4â€diol Core through a Lithiation–Borylation–Allylation Sequence. Angewandte Chemie - International Edition, 2010, 49, 6673-6675.	7.2	50
204	Synthesis of quinine and quinidine using sulfur ylide-mediated asymmetric epoxidation as a key step. Tetrahedron: Asymmetry, 2010, 21, 1771-1776.	1.8	31
205	Ring-Opening of NH-Aziridines with Thiols in Ionic Liquids: Application to the Synthesis of Aminosulfide Catalysts for Asymmetric Epoxidation of Aldehydes. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1250-1272.	0.8	6
206	Application of the Lithiationâ [*] Borylation Reaction to the Preparation of Enantioenriched Allylic Boron Reagents and Subsequent In Situ Conversion into 1,2,4-Trisubstituted Homoallylic Alcohols with Complete Control over All Elements of Stereochemistry. Journal of the American Chemical Society, 2010, 132, 4025-4028.	6.6	155
207	Protodeboronation of Tertiary Boronic Esters: Asymmetric Synthesis of Tertiary Alkyl Stereogenic Centers. Journal of the American Chemical Society, 2010, 132, 17096-17098.	6.6	210
208	Practical and Highly Selective Sulfur Ylide Mediated Asymmetric Epoxidations and Aziridinations Using an Inexpensive, Readily Available Chiral Sulfide. Applications to the Synthesis of Quinine and Quinidine. Journal of the American Chemical Society, 2010, 132, 1828-1830.	6.6	157
209	On the Mechanism of Ylide-Mediated Cyclopropanations: Evidence for a Proton-Transfer Step and Its Effect on Stereoselectivity. Journal of the American Chemical Society, 2010, 132, 7626-7630.	6.6	103
210	Stereoselective synthesis of trans- \hat{l}^2 -lactams by palladium-catalysed carbonylation of vinyl aziridines. Chemical Communications, 2010, 46, 267-269.	2.2	58
211	Stereocontrolled Synthesis of βâ€Amino Alcohols from Lithiated Aziridines and Boronic Esters. Angewandte Chemie - International Edition, 2009, 48, 1149-1152.	7.2	67
212	Asymmetric Hydroboration of 1,1â€Disubstituted Alkenes. Angewandte Chemie - International Edition, 2009, 48, 1896-1898.	7.2	122
213	Stereocontrolled Synthesis of Carbon Chains Bearing Contiguous Methyl Groups by Iterative Boronic Ester Homologations: Application to the Total Synthesis of (+)â∈Faranal. Angewandte Chemie - International Edition, 2009, 48, 6317-6319.	7.2	88
214	Complete Stereoretention in the Rhodiumâ€Catalyzed 1,2â€Addition of Chiral Secondary and Tertiary Alkyl Potassium Trifluoroborate Salts to Aldehydes. Angewandte Chemie - International Edition, 2009, 48, 6289-6292.	7.2	79
215	Improved method for the conversion of pinacolboronic esters into trifluoroborate salts: facile synthesis of chiral secondary and tertiary trifluoroborates. Tetrahedron, 2009, 65, 9956-9960.	1.0	99
216	Homologation and alkylation of boronic esters and boranes by 1,2â€metallate rearrangement of boron ate complexes. Chemical Record, 2009, 9, 24-39.	2.9	173

#	Article	IF	Citations
217	New uses for old building blocks. Nature Chemistry, 2009, 1, 433-434.	6.6	5
218	The fate of the tert-butylsulfinyl auxiliary after acid-promoted cleavage—a method for recycling t-BuSONH2. Tetrahedron Letters, 2009, 50, 3482-3484.	0.7	46
219	Homologation of Boronic Esters with Lithiated Epoxides for the Stereocontrolled Synthesis of 1,2-and 1,3-Diols and 1,2,4-Triols. Organic Letters, 2009, 11, 165-168.	2.4	73
220	Bromoethylsulfonium Saltâ€"A More Effective Annulation Agent for the Synthesis of 6- and 7-Membered 1,4-Heterocyclic Compounds. Organic Letters, 2009, 11, 257-260.	2.4	108
221	An Annulation Reaction for the Synthesis of Morpholines, Thiomorpholines, and Piperazines from βâ€Heteroatom Amino Compounds and Vinyl Sulfonium Salts. Angewandte Chemie - International Edition, 2008, 47, 3784-3786.	7.2	165
222	Synthesis and Application of Easily Recyclable Thiomorpholines for Use in Sulfur Ylide Mediated Asymmetric Epoxidation of Aldehydes. Chemistry - an Asian Journal, 2008, 3, 1657-1663.	1.7	32
223	Enantiodivergent conversion of chiral secondary alcohols into tertiary alcohols. Nature, 2008, 456, 778-782.	13.7	395
224	Application of furyl-stabilized sulfur ylides to a concise synthesis of 8a-epi-swainsonine. Chemical Communications, 2008, , 120-122.	2.2	60
225	Epoxy-Annulations by Reactions of α-Amido Ketones with Vinyl Sulfonium Salts. Reagent versus Substrate Control and Kinetic Resolution. Organic Letters, 2008, 10, 1501-1504.	2.4	69
226	Reactions of silyl-stabilised sulfur ylides with organoboranes: enantioselectivity, mechanism, and understanding. Organic and Biomolecular Chemistry, 2008, 6, 1185.	1.5	23
227	Asymmetric Lithiationâ^'Substitution of Amines Involving Rearrangement of Borates. Organic Letters, 2008, 10, 141-143.	2.4	39
228	Direct Synthesis of Functionalized Allylic Boronic Esters from Allylic Alcohols and Inexpensive Reagents and Catalysts. Synthesis, 2008, 2008, 2293-2297.	1.2	15
229	Mechanism of the Moritaâ^'Baylisâ^'Hillman Reaction:  A Computational Investigation. Journal of the American Chemical Society, 2007, 129, 15513-15525.	6.6	204
230	A new manifold for the Morita reaction: diene synthesis from simple aldehydes and acrylates/acrylonitrile mediated by phosphines. Chemical Communications, 2007, , 4128.	2.2	24
231	Chalcogenides as Organocatalysts. Chemical Reviews, 2007, 107, 5841-5883.	23.0	420
232	Aminals as Substrates for Sulfur Ylides:  A Synthesis of Functionalized Aziridines and N-Heterocycles. Organic Letters, 2007, 9, 2099-2102.	2.4	42
233	Asymmetric Sulfur Ylide Reactions with Boranes:  Scope and Limitations, Mechanism and Understanding. Journal of the American Chemical Society, 2007, 129, 14632-14639.	6.6	64
234	Asymmetric Synthesis of α-Substituted Allyl Boranes and Their Application in the Synthesis of Iso-agatharesinol. Angewandte Chemie - International Edition, 2007, 46, 359-362.	7.2	109

#	Article	IF	CITATIONS
235	Reactions of Iminium Ions with Michael Acceptors through a Morita–Baylis–Hillman-Type Reaction: Enantiocontrol and Applications in Synthesis. Angewandte Chemie - International Edition, 2007, 46, 1893-1896.	7.2	92
236	Lithiated Carbamates: Chiral Carbenoids for Iterative Homologation of Boranes and Boronic Esters. Angewandte Chemie - International Edition, 2007, 46, 7491-7494.	7.2	225
237	Reactivity and Selectivity in the Wittig Reaction:Â A Computational Study. Journal of the American Chemical Society, 2006, 128, 2394-2409.	6.6	164
238	Toward an understanding of the factors responsible for the 1,2-migration of alkyl groups in borate complexes. Pure and Applied Chemistry, 2006, 78, 215-229.	0.9	88
239	Hemiaminals as substrates for sulfur ylides: Direct asymmetric syntheses of functionalised pyrrolidines and piperidines. Chemical Communications, 2006, , 2156.	2.2	50
240	Optimization of the Mizorokiâ^'Heck Reaction Using Design of Experiment (DoE). Organic Process Research and Development, 2006, 10, 64-69.	1.3	40
241	Delineation of the factors governing reactivity and selectivity in epoxide formation from ammonium ylides and aldehydes. Organic and Biomolecular Chemistry, 2006, 4, 621.	1.5	39
242	Is phenyl a good migrating group in the rearrangement of organoborates generated from sulfur ylides?. Chemical Communications, 2006, , 741.	2.2	28
243	Asymmetric Sulfonium Ylide Mediated Cyclopropanation: Stereocontrolled Synthesis of (+)-LY354740. Chemistry - A European Journal, 2006, 12, 568-575.	1.7	84
244	Ligand-Induced Control of Câ^H versus Aliphatic Câ^'C Migration Reactions of Rh Carbenoids. Journal of the American Chemical Society, 2006, 128, 2524-2525.	6.6	50
245	QM and QM/MM studies of selectivity in organic and bioorganic chemistry. Journal of Physical Organic Chemistry, 2006, 19, 608-615.	0.9	14
246	A practical synthesis of a [2.2.1] bicyclic chiral sulfide for asymmetric transformations. Tetrahedron, 2006, 62, 11297-11303.	1.0	30
247	BF3·OEt2and TMSOTf: A synergistic combination of Lewis acids. Chemical Communications, 2006, , 4434-4436.	2.2	59
248	Highly Enantioselective Synthesis of Glycidic Amides Using Camphor-Derived Sulfonium Salts. Mechanism and Applications in Synthesis. Journal of the American Chemical Society, 2006, 128, 2105-2114.	6.6	137
249	Readily Synthesized Chiral Sulfides as Reagents for Asymmetric Epoxidation. Chemistry - an Asian Journal, 2006, 1, 438-444.	1.7	18
250	The Use of Vinyl Sulfonium Salts in the Stereocontrolled Asymmetric Synthesis of Epoxide- and Aziridine-Fused Heterocycles: Application to the Synthesis of (â^')-Balanol. Angewandte Chemie - International Edition, 2006, 45, 7066-7069.	7.2	138
251	Highly Diastereoselective Dielsâ^'Alder Reactions of Baylisâ^'Hillman Adducts. Organic Letters, 2005, 7, 2555-2557.	2.4	24
252	Separation of pyrrolidine allylation products by diastereoselective enzymatic ester hydrolysis. Tetrahedron Letters, 2005, 46, 945-947.	0.7	18

#	Article	IF	CITATIONS
253	Synthesis and Applications of Chiral Organoboranes Generated from Sulfonium Ylides. Journal of the American Chemical Society, 2005, 127, 1642-1643.	6.6	75
254	Carboxylate-stabilised sulfur ylides (thetin salts) in asymmetric epoxidation for the synthesis of glycidic acids. Mechanism and implications. Organic and Biomolecular Chemistry, 2005, 3, 1419.	1.5	22
255	The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis. European Journal of Organic Chemistry, 2005, 2005, 1479-1492.	1.2	350
256	Reevaluation of the Mechanism of the Baylis-Hillman Reaction: Implications for Asymmetric Catalysis. Angewandte Chemie - International Edition, 2005, 44, 1706-1708.	7.2	225
257	On the Importance of Leaving Group Ability in Reactions of Ammonium, Oxonium, Phosphonium, and Sulfonium Ylides. Angewandte Chemie - International Edition, 2005, 44, 5468-5471.	7.2	86
258	Enantioselective α-Arylation of Cyclohexanones with Diaryl Iodonium Salts: Application to the Synthesis of (â°')-Epibatidine. Angewandte Chemie - International Edition, 2005, 44, 5516-5519.	7.2	134
259	Synthesis and Applications of Chiral Organoboranes Generated from Sulfonium Ylides ChemInform, 2005, 36, no.	0.1	0
260	The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis. ChemInform, 2005, 36, no.	0.1	0
261	Highly Regioselective and Diastereoselective Epoxidation of Allylic Amines with Oxone ChemInform, 2005, 36, no.	0.1	0
262	Enantioselective \hat{l} ±-Arylation of Cyclohexanones with Diaryl Iodonium Salts: Application to the Synthesis of (-)-Epibatidine ChemInform, 2005, 36, no.	0.1	0
263	Reagent controlled addition of chiral sulfur ylides to chiral aldehydes. Beilstein Journal of Organic Chemistry, 2005, 1 , 4 .	1.3	10
264	On the Origin of HighESelectivity in the Wittig Reaction of Stabilized Ylides:Â Importance of Dipoleâ~Dipole Interactions. Journal of the American Chemical Society, 2005, 127, 13468-13469.	6.6	70
265	Highly regioselective and diastereoselective epoxidation of allylic amines with Oxone. Chemical Communications, 2005, , 3448.	2.2	28
266	Asymmetric Catalysis Special Feature Part I: Effect of sulfide structure on enantioselectivity in catalytic asymmetric epoxidation of aldehydes: Mechanistic insights and implications. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5467-5471.	3.3	32
267	Catalytic, Asymmetric Sulfur Ylide-Mediated Epoxidation of Carbonyl Compounds:  Scope, Selectivity, and Applications in Synthesis. Accounts of Chemical Research, 2004, 37, 611-620.	7.6	466
268	A New Protocol for the in situ Generation of Aromatic, Heteroaromatic, and Unsaturated Diazo Compounds and Its Application in Catalytic and Asymmetric Epoxidation of Carbonyl Compounds. Extensive Studies to Map Out Scope and Limitations, and Rationalization of Diastereo- and Enantioselectivities ChemInform, 2004, 35, no.	0.1	0
269	The Complexity of Catalysis: Origins of Enantio- and Diastereocontrol in Sulfur Ylide Mediated Epoxidation Reactions. ChemInform, 2004, 35, no.	0.1	0
270	Highly Diastereoselective Simmons—Smith Cyclopropanation of Allylic Amines ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
271	Catalytic Asymmetric Nazarov Reactions Promoted by Chiral Lewis Acid Complexes ChemInform, 2004, 35, no.	0.1	O
272	Application of sulfur ylide mediated epoxidations in the asymmetric synthesis of \hat{l}^2 -hydroxy- \hat{l} -lactones. Synthesis of a mevinic acid analogue and (+)-prelactone B. Tetrahedron, 2004, 60, 9725-9733.	1.0	46
273	Asymmetric synthesis of avenaciolide via cascade palladium catalysed cyclisation–carbonylation of bromodienes. Chemical Communications, 2004, , 1232-1233.	2.2	33
274	A Concise Asymmetric Route to the Bridged Bicyclic Tropane Alkaloid Ferruginine Using Enyne Ring-Closing Metathesis. Organic Letters, 2004, 6, 1469-1471.	2.4	77
275	Lithiation and Reactions of Stilbene Oxides:  Synthetic Utility. Organic Letters, 2004, 6, 4191-4194.	2.4	33
276	Catalytic Asymmetric Nazarov Reactions Promoted by Chiral Lewis Acid Complexes. Organic Letters, 2003, 5, 5075-5078.	2.4	181
277	The complexity of catalysis: origins of enantio- and diastereocontrol in sulfur ylide mediated epoxidation reactions. Chemical Communications, 2003, , 2644.	2.2	125
278	A Novel One-Pot Method for the Preparation of Pyrazoles by 1,3-Dipolar Cycloadditions of Diazo Compounds Generated in Situ. Journal of Organic Chemistry, 2003, 68, 5381-5383.	1.7	258
279	Title is missing!. Angewandte Chemie, 2003, 115, 3396-3400.	1.6	34
	A New Method for the Preparation of Silyl Enol Ethers from Carbonyl Compounds and		
280	(Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner ChemInform, 2003, 34, no-no.	0.1	0
280	(Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner ChemInform, 2003,	0.1	0
	(Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner ChemInform, 2003, 34, no-no. Application of the Chiral Acyl Anion Equivalent, trans-1,3-Dithiane 1,3-Dioxide, to an Asymmetric		
281	(Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner ChemInform, 2003, 34, no-no. Application of the Chiral Acyl Anion Equivalent, trans-1,3-Dithiane 1,3-Dioxide, to an Asymmetric Synthesis of (R)-Salbutamol (I) ChemInform, 2003, 34, no. Palladium Catalyzed Cyclizationâ€"Carbonylation of Enynes to Give Cyclic γ,Î′-Unsaturated Acids	0.1	0
281	(Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner ChemInform, 2003, 34, no-no. Application of the Chiral Acyl Anion Equivalent, trans-1,3-Dithiane 1,3-Dioxide, to an Asymmetric Synthesis of (R)-Salbutamol (I) ChemInform, 2003, 34, no. Palladium Catalyzed Cyclizationâ€"Carbonylation of Enynes to Give Cyclic γ,Î′-Unsaturated Acids ChemInform, 2003, 34, no. Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to	0.1	0
281 282 283	(Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner ChemInform, 2003, 34, no-no. Application of the Chiral Acyl Anion Equivalent, trans-1,3-Dithiane 1,3-Dioxide, to an Asymmetric Synthesis of (R)-Salbutamol (I) ChemInform, 2003, 34, no. Palladium Catalyzed Cyclizationâ€"Carbonylation of Enynes to Give Cyclic γ,Î′-Unsaturated Acids ChemInform, 2003, 34, no. Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to High E Selectivity with Semi-Stabilizing Groups in Wittig Olefinations ChemInform, 2003, 34, no. Tandem Formation and [2,3] Rearrangement of Methylene Ammonium Ylides Derived from Amines and	0.1	0 0 0
281 282 283 284	(Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner ChemInform, 2003, 34, no-no. Application of the Chiral Acyl Anion Equivalent, trans-1,3-Dithiane 1,3-Dioxide, to an Asymmetric Synthesis of (R)-Salbutamol (I) ChemInform, 2003, 34, no. Palladium Catalyzed Cyclizationâ€"Carbonylation of Enynes to Give Cyclic γ,Î′-Unsaturated Acids ChemInform, 2003, 34, no. Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to High E Selectivity with Semi-Stabilizing Groups in Wittig Olefinations ChemInform, 2003, 34, no. Tandem Formation and [2,3] Rearrangement of Methylene Ammonium Ylides Derived from Amines and the Simmonsâ€"Smith Reagent ChemInform, 2003, 34, no. Highly Enantioselective Oxidations of Ketene Dithioacetals Leading to trans Bis-sulfoxides	0.1 0.1 0.1	0 0 0
281 282 283 284	(Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner ChemInform, 2003, 34, no-no. Application of the Chiral Acyl Anion Equivalent, trans-1,3-Dithiane 1,3-Dioxide, to an Asymmetric Synthesis of (R)-Salbutamol (I) ChemInform, 2003, 34, no. Palladium Catalyzed Cyclizationâ€"Carbonylation of Enynes to Give Cyclic γ,Î⁻-Unsaturated Acids ChemInform, 2003, 34, no. Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to High E Selectivity with Semi-Stabilizing Groups in Wittig Olefinations ChemInform, 2003, 34, no. Tandem Formation and [2,3] Rearrangement of Methylene Ammonium Ylides Derived from Amines and the Simmonsâ€"Smith Reagent ChemInform, 2003, 34, no. Highly Enantioselective Oxidations of Ketene Dithioacetals Leading to trans Bis-sulfoxides ChemInform, 2003, 34, no.	0.1 0.1 0.1 0.1	0 0 0

#	Article	IF	Citations
289	Sulfur-Ylide-Mediated Synthesis of Functionalized and Trisubstituted Epoxides with High Enantioselectivity; Application to the Synthesis of CDP-840. Angewandte Chemie - International Edition, 2003, 42, 3274-3278.	7.2	122
290	A New Protocol for the In Situ Generation of Aromatic, Heteroaromatic, and Unsaturated Diazo Compounds and Its Application in Catalytic and Asymmetric Epoxidation of Carbonyl Compounds. Extensive Studies To Map Out Scope and Limitations, and Rationalization of Diastereo- and Enantioselectivities, Journal of the American Chemical Society, 2003, 125, 10926-10940.	6.6	179
291	The use of enantiomerically pure ketene dithioacetal bis(sulfoxides) in highly diastereoselective intramolecular nitrone cycloadditions. Application in the total synthesis of the β-amino acid (–)-cispentacin and the first asymmetric synthesis of cis-(3R,4R)-4-amino-pyrrolidine-3-carboxylic acid. Organic and Biomolecular Chemistry. 2003. 1. 684-691.	1.5	48
292	Highly Enantioselective Oxidations of Ketene Dithioacetals Leading to Trans Bis-sulfoxides. Journal of Organic Chemistry, 2003, 68, 4087-4090.	1.7	32
293	Tandem Formation and [2,3] Rearrangement of Methylene Ammonium Ylides Derived from Amines and the Simmonsâ´Smith Reagent. Organic Letters, 2003, 5, 1757-1760.	2.4	38
294	Asymmetric Sulfur Ylide Mediated Aziridination:  Application in the Synthesis of the Side Chain of Taxol. Organic Letters, 2003, 5, 3987-3990.	2.4	103
295	Highly Diastereoselective Simmonsâ^'Smith Cyclopropanation of Allylic Amines. Organic Letters, 2003, 5, 4417-4420.	2.4	38
296	New Insights in the Mechanism of Amine Catalyzed Epoxidation:Â Dual Role of Protonated Ammonium Salts as Both Phase Transfer Catalysts and Activators of Oxone. Journal of the American Chemical Society, 2003, 125, 7596-7601.	6.6	91
297	Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to High E Selectivity with Semi-stabilizing Groups in Wittig Olefinations. Journal of the American Chemical Society, 2003, 125, 6034-6035.	6.6	168
298	Diastereoselective Synthesis of Cyclopropane Amino Acids Using Diazo Compounds Generated in Situ. Journal of Organic Chemistry, 2003, 68, 9433-9440.	1.7	87
299	Correlation between pKaand Reactivity of Quinuclidine-Based Catalysts in the Baylisâ^'Hillman Reaction:Â Discovery of Quinuclidine as Optimum Catalyst Leading to Substantial Enhancement of Scope. Journal of Organic Chemistry, 2003, 68, 692-700.	1.7	215
300	Highly diastereoselective 1,3-dipolar cycloaddition reactions of trans-2-methylene-1,3-dithiolane 1,3-dioxide with 3-oxidopyridinium and 3-oxidopyrylium betaines: a route to the tropane skeleton. Organic and Biomolecular Chemistry, 2003, 1, 1884.	1.5	37
301	Palladium catalysed cyclisation–carbonylation of enynes to give cyclic γ,Î′-unsaturated acidsElectronic supplementary information (ESI) available: data for novel compounds. See http://www.rsc.org/suppdata/cc/b3/b300719g/. Chemical Communications, 2003, , 1046-1047.	2.2	11
302	The use of enantiomerically pure ketene dithioacetal bis(sulfoxides) in highly diastereoselective intramolecular nitrone cycloadditions. Application in the total synthesis of the beta-amino acid (-)-cispentacin and the first asymmetric synthesis of cis-(3R,4R)-4-amino-pyrrolidine-3-carboxylic acid. Organic and Biomolecular Chemistry, 2003, 1, 684-91.	1.5	12
303	A New Method for the Preparation of Silyl Enol Ethers from Carbonyl Compounds and (Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner. Journal of the American Chemical Society, 2002, 124, 10300-10301.	6.6	62
304	Highly Diastereoselective Nitrone Cycloaddition onto a Chiral Ketene Equivalent:  Asymmetric Synthesis of Cispentacin. Organic Letters, 2002, 4, 1227-1229.	2.4	62
305	Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis–Hillman reactionElectronic supplementary information (ESI) available: NMR data; details of conditions employed by Afonso and integrations and calculations. See http://www.rsc.org/suppdata/cc/b2/b203079a/. Chemical Communications. 2002 1612-1613.	2.2	194
306	Application of the Chiral Acyl Anion Equivalent, trans-1,3-Dithiane 1,3-Dioxide, to an Asymmetric Synthesis of (R)-Salbutamol. Journal of Organic Chemistry, 2002, 67, 8618-8621.	1.7	17

#	Article	IF	CITATIONS
307	Highly Diastereoselective Aziridination of Imines with Trimethylsilyldiazomethane. Subsequent Silyl Substitution with Electrophiles, Ring Opening, and Metalation of C-Silylaziridines A Cornucopia of Highly Selective Transformations. Journal of Organic Chemistry, 2002, 67, 2335-2344.	1.7	107
308	Rate Acceleration of the Baylisâ°'Hillman Reaction in Polar Solvents (Water and Formamide). Dominant Role of Hydrogen Bonding, Not Hydrophobic Effects, Is Implicated. Journal of Organic Chemistry, 2002, 67, 510-514.	1.7	189
309	Unraveling the Mechanism of Epoxide Formation from Sulfur Ylides and Aldehydes. Journal of the American Chemical Society, 2002, 124, 5747-5756.	6.6	136
310	Ketene Claisen rearrangement of camphor-derived 1,3-oxathianes: complete control of tertiary and quaternary stereogenic centresElectronic supplementary information (ESI) available: experimental data. See http://www.rsc.org/suppdata/cc/b2/b206857e/. Chemical Communications, 2002, , 2534-2535.	2.2	17
311	Extension of ring closing metathesis methodology to the synthesis of carbocyclic methyl and silyl enol ethersElectronic supplementary information (ESI) available: full experimental details. See http://www.rsc.org/suppdata/cc/b2/b208445g/. Chemical Communications, 2002, , 2490-2491.	2.2	32
312	Synthesis of epoxides from aldehydes and tosylhydrazone salts catalysed by triphenylarsine: complete trans selectivity for all combinations of coupling partnersElectronic supplementary information (ESI) available: new compounds. See http://www.rsc.org/suppdata/cc/b2/b204252e/. Chemical Communications, 2002, , 1514-1515.	2.2	21
313	A palladium catalysed cyclisation–carbonylation of bromodienes: control in carbonylation over facile β-hydride eliminationElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b2/b201311h/. Chemical Communications, 2002, , 972-973.	2.2	33
314	Synthesis of new, highly hindered C2-symmetric trans-(2S,5S)-disubstituted pyrrolidines. Tetrahedron: Asymmetry, 2002, 13, 87-93.	1.8	13
315	The use of enantiomerically pure N-sulfinimines in asymmetric Baylis–Hillman reactions. Tetrahedron Letters, 2002, 43, 1577-1581.	0.7	81
316	Sulphur ylide-mediated stereoselective synthesis of a stable ferrocenyl epoxide. Tetrahedron Letters, 2002, 43, 3475-3479.	0.7	23
317	Highly Enantioselective Darzens Reaction of a Camphor-Derived Sulfonium Amide to Give Glycidic Amides and Their Applications in Synthesis. Journal of the American Chemical Society, 2002, 124, 9964-9965.	6.6	110
318	Synthesis of Epoxides from Aldehydes and Tosylhydrazone Salts Catalyzed by Triphenylarsine: Complete trans Selectivity for all Combinations of Coupling Partners ChemInform, 2002, 33, 120-120.	0.1	0
319	Synthesis and evaluation of a broad range of chiral sulfides for asymmetric sulfur ylide epoxidation of aldehydes. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2604-2622.	1.3	25
320	Catalytic Cyclopropanation of Alkenes Using Diazo Compounds Generated in Situ. A Novel Route to 2-Arylcyclopropylamines. Organic Letters, 2001, 3, 2785-2788.	2.4	126
321	Scope and limitations in sulfur ylide mediated catalytic asymmetric aziridination of imines: use of phenyldiazomethane, diazoesters and diazoacetamidesâ€. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1635-1643.	1.3	84
322	Additions of stabilised and semi-stabilised sulfur ylides to tosyl protected imines: are they under kinetic or thermodynamic control?. Journal of the Chemical Society, Perkin Transactions $1,2001,$, $3159-3166$.	1.3	53
323	A novel procedure for the synthesis of aziridines: application of Simmons–Smith reagents to aziridination. Tetrahedron Letters, 2001, 42, 1587-1589.	0.7	35
324	Catalytic Asymmetric Synthesis of Epoxides from Aldehydes Using Sulfur Ylides with In Situ Generation of Diazocompounds. Angewandte Chemie - International Edition, 2001, 40, 1430-1433.	7.2	194

#	Article	IF	Citations
325	Application of Chiral Sulfides to Catalytic Asymmetric Aziridination and Cyclopropanation with In Situ Generation of the Diazo Compound. Angewandte Chemie - International Edition, 2001, 40, 1433-1436. Catalytic Asymmetric Synthesis of Epoxides from Aldehydes Using Sulfur Ylides with In Situ	7.2	357
326	Generation of Diazocompounds We thank the EPSRC (K.M.L., M.J.P., J.R.S.), Avecia for the support of a studentship (M.P.), the EU for a Marie Curie Fellowship (E.A.; HPMF-CT-1999-00076), and Sheffield University for financial support. We thank Dr. J. Blacker (Avecia), Dr. R. V. H. Jones (Zeneca) Tj ETQq0 0 0 rgBT/0	Overlock 1	.0 T <mark>f</mark> 50 692 T
327	Sity Generation of the Diazo Compound We2thank Avecia (M.P.), the EPSRC (M.F.), the EU for a Marie Curie Fellowship (E.A.; HPMF-CT-1999-00076), Lu'an Teacher's College and the Education Minister of The Peoples Republic of China (G.F.), and Sheffield University for financial support. We thank Dr. J. Blacker (Avecia), Dr. R. V. H. Jones (Zeneca Agrochemicals), and Dr. R. Fieldhouse (Zeneca Agrochemicals) for	7.2	5
328	thel. Angewandte Chemie - International Edition, 2001, 40, 1433-1436. A simple, user-friendly process for the homologation of aldehydes using tosylhydrazone salts. Tetrahedron Letters, 2000, 41, 10327-10331.	0.7	34
329	Highly Selective Aziridination of Imines Using Trimethylsilyldiazomethane and Applications of C-Silylaziridines in Synthesis. Organic Letters, 2000, 2, 4107-4110.	2.4	68
330	Amidine-Promoted Addition of Chloroform to Carbonyl Compounds. Journal of Organic Chemistry, 2000, 65, 7211-7212.	1.7	67
331	Stereochemical control in the synthesis of tetrahydrofurans by cyclisation of diols with [1,2]-phenylsulfanyl migration. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 533-546.	1.3	8
332	Epoxidation of Alkenes by Amine Catalyst Precursors:Â Implication of Aminium Ion and Radical Cation Intermediates. Journal of the American Chemical Society, 2000, 122, 8317-8318.	6.6	94
333	Catalytic cyclopropanation of electron deficient alkenes mediated by chiral and achiral sulfides: scope and limitations in reactions involving phenyldiazomethane and ethyl diazoacetate. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3267-3276.	1.3	99
334	[2,3]-Sigmatropic rearrangement of allylic sulfur ylides derived from trimethylsilyldiazomethane (TMSD). Tetrahedron Letters, 1999, 40, 8923-8927.	0.7	57
335	The development and use of ketene equivalents in [4+2] cycloadditions for organic synthesis. Tetrahedron, 1999, 55, 293-312.	1.0	53
336	A Formal Asymmetric Synthesis of (+)-Anatoxin-a Using an Enantioselective Deprotonation Strategy on an Eight-Membered Ring. Angewandte Chemie - International Edition, 1999, 38, 1985-1986.	7.2	40
337	An Improved Resolution Of 2-Methyl Piperidine And Its Use in The Synthesis Of Homochiral Trans-2,6-Dialkyl Piperidines. Synthetic Communications, 1999, 29, 1747-1756.	1.1	17
338	A Formal Asymmetric Synthesis of (+)-Anatoxin-a Using an Enantioselective Deprotonation Strategy on an Eight-Membered Ring., 1999, 38, 1985.		1
339	Metal- and Ligand-Accelerated Catalysis of the Baylisâ^'Hillman Reaction. Journal of Organic Chemistry, 1998, 63, 7183-7189.	1.7	202
340	Studies on the Asymmetric Oxidation of Ester Derivatives of 1,3-Dithiane-2-carboxylates. Asymmetric Synthesis oftrans-1,3-Dithiane 1,3-Dioxide. Journal of Organic Chemistry, 1998, 63, 7306-7310.	1.7	25
341	Highly Diastereoselective Epoxidation of Ketene Dithioacetal Dioxides: A New Approach to the Asymmetric Synthesis of α-Amino Amides. Journal of Organic Chemistry, 1998, 63, 7128-7129.	1.7	36
342	Catalytic Asymmetric Epoxidation of Aldehydes. Optimization, Mechanism, and Discovery of Stereoelectronic Control Involving a Combination of Anomeric and Cieplak Effects in Sulfur Ylide Epoxidations with Chiral 1,3-Oxathianes. Journal of the American Chemical Society, 1998, 120, 8328-8339.	6.6	127

#	Article	IF	Citations
343	Sc(OTf)3, an Efficient Catalyst for Formation and Deprotection of Geminal Diacetates (Acylals); Chemoselective Protection of Aldehydes in Presence of Ketones. Synlett, 1998, 1998, 849-850.	1.0	96
344	Catalytic Asymmetric Epoxidation and Aziridination Mediated by Sulfur Ylides. Evolution of a Project. Synlett, 1998, 1998, 329-336.	1.0	85
345	Dimethylsulfonium fluoren-9-ide: solution structure and dynamic behaviour of a semi-stabilised sulfonium ylide. Journal of the Chemical Society Perkin Transactions 1, 1997, , 2811-2813.	0.9	10
346	Catalytic asymmetric cyclopropanation of electron deficient alkenes mediated by chiral sulfides. Chemical Communications, 1997, , 1785-1786.	2.2	64
347	Anion Reactions oftrans-1,3-Dithiolane 1,3-Dioxide with Aldehydes and Comparison withtrans-1,3-Dithiane 1,3-Dioxide. Journal of Organic Chemistry, 1997, 62, 1139-1145.	1.7	22
348	Asymmetric Ylide Reactions:  Epoxidation, Cyclopropanation, Aziridination, Olefination, and Rearrangement. Chemical Reviews, 1997, 97, 2341-2372.	23.0	833
349	Additions of benzylsulfonium ylides to aldehydes and ketones: are they under kinetic or thermodynamic control?. Journal of the Chemical Society Perkin Transactions 1, 1997, , 593-600.	0.9	41
350	A Novel Procedure for the Synthesis of Epoxides:Â Application of Simmonsâ "Smith Reagents toward Epoxidation. Journal of Organic Chemistry, 1997, 62, 8628-8629.	1.7	45
351	trans-1,3-dithiane-1,3-dioxide; a chiral acyl anion equivalent. Enantioselective synthesis of α-hydroxy-carboxylic acids, esters, amides and ketones. Tetrahedron, 1997, 53, 16213-16228.	1.0	94
352	Trifluoromethanesulfonic Acid, an Efficient Catalyst for the Hetero Diels-Alder Reaction and an Improved Synthesis of Mefrosol Tetrahedron Letters, 1997, 38, 2569-2572.	0.7	31
353	Palladium-Catalyzed Substitution of Unsaturated Lactones. Application to the Synthesis of Carbocyclic Polyoxins and Nikkomycins. Journal of Organic Chemistry, 1996, 61, 1192-1193.	1.7	35
354	Direct Asymmetric Epoxidation of Aldehydes Using Catalytic Amounts of Enantiomerically Pure Sulfides. Journal of the American Chemical Society, 1996, 118, 7004-7005.	6.6	139
355	Novel Catalytic and Asymmetric Process for Aziridination Mediated by Sulfur Ylides. Journal of Organic Chemistry, 1996, 61, 8368-8369.	1.7	174
356	A Novel Catalytic Cycle for the Synthesis of Epoxides Using Sulfur Ylides. Chemistry - A European Journal, 1996, 2, 1024-1030.	1.7	44
357	Complexes containing a Lewis acid and BrÃ, nsted acid for the catalytic asymmetric Diels-Alder reaction. Tetrahedron: Asymmetry, 1995, 6, 1301-1306.	1.8	29
358	The use of chiral sulfides in catalytic asymmetric epoxidation. Tetrahedron: Asymmetry, 1995, 6, 2557-2564.	1.8	43
359	(1R,3R)-2-Methylene-1,3-dithiolane 1,3-dioxide: A highly reactive and selective chiral ketene equivalent Journal of Organic Chemistry, 1995, 60, 4962-4963.	1.7	62
360	Anion Reactions of 1,3-Dithiane 1,3-Dioxide with Carbonyl Compounds: High Diastereoselectivity with Aromatic Aldehydes under Conditions of Equilibrium Control. Journal of Organic Chemistry, 1995, 60, 2174-2182.	1.7	34

#	Article	IF	CITATIONS
361	Asymmetric epoxidation using chiral sulfur ylides. Tetrahedron: Asymmetry, 1994, 5, 723-730.	1.8	45
362	Synthesis of sulfonium salts by sulfide alkylation; an alternative approach. Tetrahedron Letters, 1994, 35, 8659-8660.	0.7	23
363	A Novel Catalytic Cycle for the Synthesis of Epoxides Using Sulfur Ylides, and Application to the Synthesis of Cyclopropanes and Aziridines. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 283-292.	0.8	0
364	Novel Catalytic Cycle for the Synthesis of Epoxides from Aldehydes and Sulfur Ylides Mediated by Catalytic Quantities of Sulfides and Rh2(OAc)4. Journal of the American Chemical Society, 1994, 116, 5973-5974.	6.6	99
365	Asymmetric Synthesis and Cycloaddition Chemistry of Trans-2-Methylene-1,3-Dithiolane 1,3-Dioxide. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 337-338.	0.8	2
366	Chiral Ketene Equivalents for Use in Asymmetric Synthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 74, 407-408.	0.8	6
367	Chiral bisfunctionalization of substrates: a powerful strategy for the asymmetric synthesis of C2 symmetric compounds and its application to the synthesis of enantiomerically pure trans-1,3-dithiane 1,3-dioxide. Journal of Organic Chemistry, 1992, 57, 6390-6391.	1.7	62
368	Highly stereoselective addition reactions of metallated trans-1,3-dithiane-1,3-dioxide to aldehydes. Tetrahedron Letters, 1991, 32, 7743-7746.	0.7	35
369	Phenylthio(Phs) migration in the stereocontrolled synthesis of allylic alcohols with 1, 4 related chiral centres Tetrahedron Letters, 1986, 27, 101-104.	0.7	40
370	Rearrangements of Organozinc Compounds., 0,, 595-639.		3
371	Ylide-Based Reactions., 0,, 357-389.		16
372	Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene Sâ€Oxides with Boronic Esters. Angewandte Chemie, 0, , .	1.6	2
373	Assembly Line Synthesis. , 0, , .		0
374	Selective Coupling of 1,2â€Bisâ€Boronic Esters at the more Substituted Site through Visibleâ€Light Activation of Electron Donor–Acceptor Complexes. Angewandte Chemie, 0, , .	1.6	6
375	Dual Nickel/Photoredoxâ€Catalyzed Siteâ€Selective Crossâ€Coupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie, 0, , .	1.6	2