Varinder K Aggarwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7345634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric Ylide Reactions:  Epoxidation, Cyclopropanation, Aziridination, Olefination, and Rearrangement. Chemical Reviews, 1997, 97, 2341-2372.	47.7	833
2	Photoinduced decarboxylative borylation of carboxylic acids. Science, 2017, 357, 283-286.	12.6	523
3	Catalytic, Asymmetric Sulfur Ylide-Mediated Epoxidation of Carbonyl Compounds:  Scope, Selectivity, and Applications in Synthesis. Accounts of Chemical Research, 2004, 37, 611-620.	15.6	466
4	Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chemical Communications, 2017, 53, 5481-5494.	4.1	458
5	Chalcogenides as Organocatalysts. Chemical Reviews, 2007, 107, 5841-5883.	47.7	420
6	Enantiodivergent conversion of chiral secondary alcohols into tertiary alcohols. Nature, 2008, 456, 778-782.	27.8	395
7	Application of Chiral Sulfides to Catalytic Asymmetric Aziridination and Cyclopropanation with In Situ Generation of the Diazo Compound. Angewandte Chemie - International Edition, 2001, 40, 1433-1436.	13.8	357
8	Enantiospecific sp2–sp3 coupling of secondary and tertiary boronic esters. Nature Chemistry, 2014, 6, 584-589.	13.6	356
9	The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis. European Journal of Organic Chemistry, 2005, 2005, 1479-1492.	2.4	350
10	Lithiation–Borylation Methodology and Its Application in Synthesis. Accounts of Chemical Research, 2014, 47, 3174-3183.	15.6	333
11	Photoinduced Deaminative Borylation of Alkylamines. Journal of the American Chemical Society, 2018, 140, 10700-10704.	13.7	310
12	Stereospecific Couplings of Secondary and Tertiary Boronic Esters. Angewandte Chemie - International Edition, 2015, 54, 1082-1096.	13.8	276
13	A Novel One-Pot Method for the Preparation of Pyrazoles by 1,3-Dipolar Cycloadditions of Diazo Compounds Generated in Situ. Journal of Organic Chemistry, 2003, 68, 5381-5383.	3.2	258
14	Assembly-line synthesis of organic molecules with tailored shapes. Nature, 2014, 513, 183-188.	27.8	252
15	Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron Transfer. Angewandte Chemie - International Edition, 2019, 58, 5697-5701.	13.8	250
16	Asymmetric Synthesis of Secondary and Tertiary Boronic Esters. Angewandte Chemie - International Edition, 2017, 56, 11700-11733.	13.8	232
17	Reevaluation of the Mechanism of the Baylis-Hillman Reaction: Implications for Asymmetric Catalysis. Angewandte Chemie - International Edition, 2005, 44, 1706-1708.	13.8	225
18	Lithiated Carbamates: Chiral Carbenoids for Iterative Homologation of Boranes and Boronic Esters. Angewandte Chemie - International Edition, 2007, 46, 7491-7494.	13.8	225

#	Article	IF	CITATIONS
19	Correlation between pKaand Reactivity of Quinuclidine-Based Catalysts in the Baylisâ~'Hillman Reaction:Â Discovery of Quinuclidine as Optimum Catalyst Leading to Substantial Enhancement of Scope. Journal of Organic Chemistry, 2003, 68, 692-700.	3.2	215
20	Protodeboronation of Tertiary Boronic Esters: Asymmetric Synthesis of Tertiary Alkyl Stereogenic Centers. Journal of the American Chemical Society, 2010, 132, 17096-17098.	13.7	210
21	Mechanism of the Moritaâ^'Baylisâ^'Hillman Reaction:  A Computational Investigation. Journal of the American Chemical Society, 2007, 129, 15513-15525.	13.7	204
22	Metal- and Ligand-Accelerated Catalysis of the Baylisâ^'Hillman Reaction. Journal of Organic Chemistry, 1998, 63, 7183-7189.	3.2	202
23	Catalytic Asymmetric Synthesis of Epoxides from Aldehydes Using Sulfur Ylides with In Situ Generation of Diazocompounds. Angewandte Chemie - International Edition, 2001, 40, 1430-1433.	13.8	194
24	Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis–Hillman reactionElectronic supplementary information (ESI) available: NMR data; details of conditions employed by Afonso and integrations and calculations. See http://www.rsc.org/suppdata/cc/b2/b203079a/. Chemical Communications, 2002, , 1612-1613.	4.1	194
25	Rate Acceleration of the Baylisâ ``Hillman Reaction in Polar Solvents (Water and Formamide). Dominant Role of Hydrogen Bonding, Not Hydrophobic Effects, Is Implicated. Journal of Organic Chemistry, 2002, 67, 510-514.	3.2	189
26	Enantioselective Construction of Quaternary Stereogenic Centers from Tertiary Boronic Esters: Methodology and Applications. Angewandte Chemie - International Edition, 2011, 50, 3760-3763.	13.8	189
27	Catalytic Asymmetric Nazarov Reactions Promoted by Chiral Lewis Acid Complexes. Organic Letters, 2003, 5, 5075-5078.	4.6	181
28	Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes. Journal of the American Chemical Society, 2017, 139, 5736-5739.	13.7	180
29	A New Protocol for the In Situ Generation of Aromatic, Heteroaromatic, and Unsaturated Diazo Compounds and Its Application in Catalytic and Asymmetric Epoxidation of Carbonyl Compounds. Extensive Studies To Map Out Scope and Limitations, and Rationalization of Diastereo- and Enantioselectivities. Journal of the American Chemical Society, 2003, 125, 10926-10940.	13.7	179
30	Novel Catalytic and Asymmetric Process for Aziridination Mediated by Sulfur Ylides. Journal of Organic Chemistry, 1996, 61, 8368-8369.	3.2	174
31	Homologation and alkylation of boronic esters and boranes by 1,2â€metallate rearrangement of boron ate complexes. Chemical Record, 2009, 9, 24-39.	5.8	173
32	Ate Complexes of Secondary Boronic Esters as Chiral Organometallic-Type Nucleophiles for Asymmetric Synthesis. Journal of the American Chemical Society, 2011, 133, 16794-16797.	13.7	170
33	Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to High E Selectivity with Semi-stabilizing Groups in Wittig Olefinations. Journal of the American Chemical Society, 2003, 125, 6034-6035.	13.7	168
34	Highly Enantioselective Synthesis of Tertiary Boronic Esters and their Stereospecific Conversion to other Functional Groups and Quaternary Stereocentres. Chemistry - A European Journal, 2011, 17, 13124-13132.	3.3	168
35	An Annulation Reaction for the Synthesis of Morpholines, Thiomorpholines, and Piperazines from βâ€Heteroatom Amino Compounds and Vinyl Sulfonium Salts. Angewandte Chemie - International Edition, 2008, 47, 3784-3786.	13.8	165
36	Reactivity and Selectivity in the Wittig Reaction:Â A Computational Study. Journal of the American Chemical Society, 2006, 128, 2394-2409.	13.7	164

#	Article	IF	CITATIONS
37	Practical and Highly Selective Sulfur Ylide Mediated Asymmetric Epoxidations and Aziridinations Using an Inexpensive, Readily Available Chiral Sulfide. Applications to the Synthesis of Quinine and Quinidine. Journal of the American Chemical Society, 2010, 132, 1828-1830.	13.7	157
38	50 Years of Zweifel Olefination: A Transition-Metal-Free Coupling. Synthesis, 2017, 49, 3323-3336.	2.3	156
39	Application of the Lithiationâ [^] 'Borylation Reaction to the Preparation of Enantioenriched Allylic Boron Reagents and Subsequent In Situ Conversion into 1,2,4-Trisubstituted Homoallylic Alcohols with Complete Control over All Elements of Stereochemistry. Journal of the American Chemical Society. 2010. 132. 4025-4028.	13.7	155
40	Carbopalladation of C–C σ-bonds enabled by strained boronate complexes. Nature Chemistry, 2019, 11, 117-122.	13.6	140
41	Direct Asymmetric Epoxidation of Aldehydes Using Catalytic Amounts of Enantiomerically Pure Sulfides. Journal of the American Chemical Society, 1996, 118, 7004-7005.	13.7	139
42	The Use of Vinyl Sulfonium Salts in the Stereocontrolled Asymmetric Synthesis of Epoxide- and Aziridine-Fused Heterocycles: Application to the Synthesis of (â^')-Balanol. Angewandte Chemie - International Edition, 2006, 45, 7066-7069.	13.8	138
43	Highly Enantioselective Synthesis of Clycidic Amides Using Camphor-Derived Sulfonium Salts. Mechanism and Applications in Synthesis. Journal of the American Chemical Society, 2006, 128, 2105-2114.	13.7	137
44	Unraveling the Mechanism of Epoxide Formation from Sulfur Ylides and Aldehydes. Journal of the American Chemical Society, 2002, 124, 5747-5756.	13.7	136
45	Enantioselective α-Arylation of Cyclohexanones with Diaryl Iodonium Salts: Application to the Synthesis of (â^')-Epibatidine. Angewandte Chemie - International Edition, 2005, 44, 5516-5519.	13.8	134
46	Stereospecific Coupling of Boronic Esters with N-Heteroaromatic Compounds. Journal of the American Chemical Society, 2015, 137, 10958-10961.	13.7	131
47	Development of Enantiospecific Coupling of Secondary and Tertiary Boronic Esters with Aromatic Compounds. Journal of the American Chemical Society, 2016, 138, 9521-9532.	13.7	131
48	Full Chirality Transfer in the Conversion of Secondary Alcohols into Tertiary Boronic Esters and Alcohols Using Lithiation–Borylation Reactions. Angewandte Chemie - International Edition, 2010, 49, 5142-5145.	13.8	130
49	Catalytic Asymmetric Epoxidation of Aldehydes. Optimization, Mechanism, and Discovery of Stereoelectronic Control Involving a Combination of Anomeric and Cieplak Effects in Sulfur Ylide Epoxidations with Chiral 1,3-Oxathianes. Journal of the American Chemical Society, 1998, 120, 8328-8339.	13.7	127
50	Toward Ideality: The Synthesis of (+)-Kalkitoxin and (+)-Hydroxyphthioceranic Acid by Assembly-Line Synthesis. Journal of the American Chemical Society, 2015, 137, 4398-4403.	13.7	127
51	Catalytic Cyclopropanation of Alkenes Using Diazo Compounds Generated in Situ. A Novel Route to 2-Arylcyclopropylamines. Organic Letters, 2001, 3, 2785-2788.	4.6	126
52	The complexity of catalysis: origins of enantio- and diastereocontrol in sulfur ylide mediated epoxidation reactions. Chemical Communications, 2003, , 2644.	4.1	125
53	Stereocontrolled organocatalytic synthesis of prostaglandin PGF2α in seven steps. Nature, 2012, 489, 278-281.	27.8	125
54	Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature, 2020, 586, 714-719.	27.8	124

#	Article	IF	CITATIONS
55	Highly Diastereoselective and Enantiospecific Allylation of Ketones and Imines Using Borinic Esters: Contiguous Quaternary Stereogenic Centers. Angewandte Chemie - International Edition, 2014, 53, 10992-10996.	13.8	123
56	Sulfur-Ylide-Mediated Synthesis of Functionalized and Trisubstituted Epoxides with High Enantioselectivity; Application to the Synthesis of CDP-840. Angewandte Chemie - International Edition, 2003, 42, 3274-3278.	13.8	122
57	Asymmetric Hydroboration of 1,1â€Disubstituted Alkenes. Angewandte Chemie - International Edition, 2009, 48, 1896-1898.	13.8	122
58	Highly Diastereo- and Enantioselective Allylboration of Aldehydes using α-Substituted Allyl/Crotyl Pinacol Boronic Esters via in Situ Generated Borinic Esters. Journal of the American Chemical Society, 2013, 135, 5316-5319.	13.7	121
59	Synthesis of Functionalized Cyclopropanes from Carboxylic Acids by a Radical Addition–Polar Cyclization Cascade. Angewandte Chemie - International Edition, 2018, 57, 15430-15434.	13.8	117
60	Palladiumâ€Mediated Annulation of Vinyl Aziridines with Michael Acceptors: Stereocontrolled Synthesis of Substituted Pyrrolidines and Its Application in a Formal Synthesis of (â`')â€Î±â€Kainic Acid. Angewandte Chemie - International Edition, 2011, 50, 6370-6374.	13.8	116
61	Visibleâ€Lightâ€Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γâ€Amino Boronic Esters. Angewandte Chemie - International Edition, 2018, 57, 2155-2159.	13.8	112
62	Highly Enantioselective Darzens Reaction of a Camphor-Derived Sulfonium Amide to Give Glycidic Amides and Their Applications in Synthesis. Journal of the American Chemical Society, 2002, 124, 9964-9965.	13.7	110
63	Asymmetric Synthesis of α-Substituted Allyl Boranes and Their Application in the Synthesis of Iso-agatharesinol. Angewandte Chemie - International Edition, 2007, 46, 359-362.	13.8	109
64	Bromoethylsulfonium Salt—A More Effective Annulation Agent for the Synthesis of 6- and 7-Membered 1,4-Heterocyclic Compounds. Organic Letters, 2009, 11, 257-260.	4.6	108
65	Radical Addition to Strained Ïf-Bonds Enables the Stereocontrolled Synthesis of Cyclobutyl Boronic Esters. Journal of the American Chemical Society, 2019, 141, 9511-9515.	13.7	108
66	Highly Diastereoselective Aziridination of Imines with Trimethylsilyldiazomethane. Subsequent Silyl Substitution with Electrophiles, Ring Opening, and Metalation ofC-SilylaziridinesA Cornucopia of Highly Selective Transformations. Journal of Organic Chemistry, 2002, 67, 2335-2344.	3.2	107
67	Strain-Release-Driven Homologation of Boronic Esters: Application to the Modular Synthesis of Azetidines. Journal of the American Chemical Society, 2019, 141, 4573-4578.	13.7	107
68	Stereospecific 1,2â€Migrations of Boronate Complexes Induced by Electrophiles. Angewandte Chemie - International Edition, 2020, 59, 16859-16872.	13.8	106
69	Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature, 2017, 547, 436-440.	27.8	104
70	Asymmetric Sulfur Ylide Mediated Aziridination:  Application in the Synthesis of the Side Chain of Taxol. Organic Letters, 2003, 5, 3987-3990.	4.6	103
71	On the Mechanism of Ylide-Mediated Cyclopropanations: Evidence for a Proton-Transfer Step and Its Effect on Stereoselectivity. Journal of the American Chemical Society, 2010, 132, 7626-7630.	13.7	103
72	Photoinduced Deoxygenative Borylations of Aliphatic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 18830-18834.	13.8	103

#	Article	IF	CITATIONS
73	Practical and Highly Selective Sulfur Ylide-Mediated Asymmetric Epoxidations and Aziridinations Using a Cheap and Readily Available Chiral Sulfide: Extensive Studies To Map Out Scope, Limitations, and Rationalization of Diastereo- and Enantioselectivities. Journal of the American Chemical Society, 2013, 135, 11951-11966.	13.7	102
74	Enantioselective Rhodium(III)-Catalyzed Markovnikov Hydroboration of Unactivated Terminal Alkenes. Journal of the American Chemical Society, 2017, 139, 9148-9151.	13.7	101
75	Decarboxylative Conjunctive Cross oupling of Vinyl Boronic Esters using Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 4375-4379.	13.8	101
76	Novel Catalytic Cycle for the Synthesis of Epoxides from Aldehydes and Sulfur Ylides Mediated by Catalytic Quantities of Sulfides and Rh2(OAc)4. Journal of the American Chemical Society, 1994, 116, 5973-5974.	13.7	99
77	Catalytic cyclopropanation of electron deficient alkenes mediated by chiral and achiral sulfides: scope and limitations in reactions involving phenyldiazomethane and ethyl diazoacetate. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3267-3276.	1.3	99
78	Improved method for the conversion of pinacolboronic esters into trifluoroborate salts: facile synthesis of chiral secondary and tertiary trifluoroborates. Tetrahedron, 2009, 65, 9956-9960.	1.9	99
79	Palladium-Catalyzed Insertion of CO ₂ into Vinylaziridines: New Route to 5-Vinyloxazolidinones. Organic Letters, 2011, 13, 3454-3457.	4.6	97
80	Synthesis of hydroxyphthioceranic acid using a traceless lithiation–borylation–protodeboronation strategy. Nature Chemistry, 2014, 6, 810-814.	13.6	97
81	Sc(OTf)3, an Efficient Catalyst for Formation and Deprotection of Geminal Diacetates (Acylals); Chemoselective Protection of Aldehydes in Presence of Ketones. Synlett, 1998, 1998, 849-850.	1.8	96
82	Photoredox atalyzed Cyclobutane Synthesis by a Deboronative Radical Addition–Polar Cyclization Cascade. Angewandte Chemie - International Edition, 2019, 58, 3870-3874.	13.8	96
83	trans-1,3-dithiane-1,3-dioxide; a chiral acyl anion equivalent. Enantioselective synthesis of α-hydroxy- carboxylic acids, esters, amides and ketones. Tetrahedron, 1997, 53, 16213-16228.	1.9	94
84	Epoxidation of Alkenes by Amine Catalyst Precursors:Â Implication of Aminium Ion and Radical Cation Intermediates. Journal of the American Chemical Society, 2000, 122, 8317-8318.	13.7	94
85	Enantioselective Syntheses of (+)-Sertraline and (+)-Indatraline Using Lithiation/Borylation–Protodeboronation Methodology. Organic Letters, 2011, 13, 5740-5743.	4.6	94
86	Synthesis of Enantioenriched Tertiary Boronic Esters from Secondary Allylic Carbamates. Application to the Synthesis of C30 Botryococcene. Journal of the American Chemical Society, 2012, 134, 7570-7574.	13.7	94
87	Reactions of Iminium Ions with Michael Acceptors through a Morita–Baylis–Hillman-Type Reaction: Enantiocontrol and Applications in Synthesis. Angewandte Chemie - International Edition, 2007, 46, 1893-1896.	13.8	92
88	New Insights in the Mechanism of Amine Catalyzed Epoxidation:Â Dual Role of Protonated Ammonium Salts as Both Phase Transfer Catalysts and Activators of Oxone. Journal of the American Chemical Society, 2003, 125, 7596-7601.	13.7	91
89	Use of alkyl 2,4,6-triisopropylbenzoates in the asymmetric homologation of challenging boronic esters. Chemical Communications, 2011, 47, 12592.	4.1	89
90	Toward an understanding of the factors responsible for the 1,2-migration of alkyl groups in borate complexes. Pure and Applied Chemistry, 2006, 78, 215-229.	1.9	88

#	Article	IF	CITATIONS
91	Stereocontrolled Synthesis of Carbon Chains Bearing Contiguous Methyl Groups by Iterative Boronic Ester Homologations: Application to the Total Synthesis of (+)â€Faranal. Angewandte Chemie - International Edition, 2009, 48, 6317-6319.	13.8	88
92	Diastereoselective Synthesis of Cyclopropane Amino Acids Using Diazo Compounds Generated in Situ. Journal of Organic Chemistry, 2003, 68, 9433-9440.	3.2	87
93	Synthesis of Enantioenriched Tertiary Boronic Esters by the Lithiation/Borylation of Secondary Alkyl Benzoates. Journal of the American Chemical Society, 2013, 135, 16054-16057.	13.7	87
94	On the Importance of Leaving Group Ability in Reactions of Ammonium, Oxonium, Phosphonium, and Sulfonium Ylides. Angewandte Chemie - International Edition, 2005, 44, 5468-5471.	13.8	86
95	Catalytic Asymmetric Epoxidation and Aziridination Mediated by Sulfur Ylides. Evolution of a Project. Synlett, 1998, 1998, 329-336.	1.8	85
96	Construction of Multiple, Contiguous Quaternary Stereocenters in Acyclic Molecules by Lithiation-Borylation. Journal of the American Chemical Society, 2014, 136, 17370-17373.	13.7	85
97	Scope and limitations in sulfur ylide mediated catalytic asymmetric aziridination of imines: use of phenyldiazomethane, diazoesters and diazoacetamidesâ€. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1635-1643.	1.3	84
98	Asymmetric Sulfonium Ylide Mediated Cyclopropanation: Stereocontrolled Synthesis of (+)-LY354740. Chemistry - A European Journal, 2006, 12, 568-575.	3.3	84
99	Asymmetric Synthesis of Allylsilanes by the Borylation of Lithiated Carbamates: Formal Total Synthesis of (â^)â€Decarestrictineâ€D. Angewandte Chemie - International Edition, 2010, 49, 4264-4268.	13.8	84
100	Asymmetric Synthesis of Tertiary and Quaternary Allyl- and Crotylsilanes via the Borylation of Lithiated Carbamates. Organic Letters, 2011, 13, 1490-1493.	4.6	84
101	Synthesis of Enantioenriched Alkylfluorides by the Fluorination of Boronate Complexes. Journal of the American Chemical Society, 2015, 137, 10100-10103.	13.7	83
102	The use of enantiomerically pure N-sulfinimines in asymmetric Baylis–Hillman reactions. Tetrahedron Letters, 2002, 43, 1577-1581.	1.4	81
103	1,2-Boron Shifts of β-Boryl Radicals Generated from Bis-boronic Esters Using Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 14104-14109.	13.7	81
104	1,3â€Difunctionalizations of [1.1.1]Propellane via 1,2â€Metallate Rearrangements of Boronate Complexes. Angewandte Chemie - International Edition, 2020, 59, 3917-3921.	13.8	80
105	Complete Stereoretention in the Rhodium atalyzed 1,2â€Addition of Chiral Secondary and Tertiary Alkyl Potassium Trifluoroborate Salts to Aldehydes. Angewandte Chemie - International Edition, 2009, 48, 6289-6292.	13.8	79
106	Enantiospecific, Regioselective Cross oupling Reactions of Secondary Allylic Boronic Esters. Chemistry - A European Journal, 2013, 19, 17698-17701.	3.3	78
107	A Concise Asymmetric Route to the Bridged Bicyclic Tropane Alkaloid Ferruginine Using Enyne Ring-Closing Metathesis. Organic Letters, 2004, 6, 1469-1471.	4.6	77
108	Synthesis of Functionalized Alkenes by a Transition-Metal-Free Zweifel Coupling. Organic Letters, 2017, 19, 2762-2765.	4.6	77

#	Article	IF	CITATIONS
109	Synthesis and Applications of Chiral Organoboranes Generated from Sulfonium Ylides. Journal of the American Chemical Society, 2005, 127, 1642-1643.	13.7	75
110	Synthesis of Highly Enantioenriched Câ€Tertiary Amines From Boronic Esters: Application to the Synthesis of Igmesine. Angewandte Chemie - International Edition, 2011, 50, 1080-1083.	13.8	75
111	Stereocontrolled Total Synthesis of (â^')‣temaphylline. Angewandte Chemie - International Edition, 2017, 56, 2127-2131.	13.8	75
112	Homologation of Boronic Esters with Lithiated Epoxides for the Stereocontrolled Synthesis of 1,2- and 1,3-Diols and 1,2,4-Triols. Organic Letters, 2009, 11, 165-168.	4.6	73
113	Enantioselective Synthesis and Cross oupling of Tertiary Propargylic Boronic Esters Using Lithiation–Borylation of Propargylic Carbamates. Angewandte Chemie - International Edition, 2012, 51, 11795-11799.	13.8	73
114	Total Synthesis of (+)-Erogorgiaene Using Lithiation–Borylation Methodology, and Stereoselective Synthesis of Each of Its Diastereoisomers. Journal of the American Chemical Society, 2011, 133, 16798-16801.	13.7	71
115	On the Origin of HighESelectivity in the Wittig Reaction of Stabilized Ylides:Â Importance of Dipoleâ^Dipole Interactions. Journal of the American Chemical Society, 2005, 127, 13468-13469.	13.7	70
116	Iterative assembly line synthesis of polypropionates with full stereocontrol. Nature Chemistry, 2017, 9, 896-902.	13.6	70
117	Asymmetrische Synthese sekundäer und tertiäer Boronsäreester. Angewandte Chemie, 2017, 129, 11860-11894.	2.0	70
118	Epoxy-Annulations by Reactions of α-Amido Ketones with Vinyl Sulfonium Salts. Reagent versus Substrate Control and Kinetic Resolution. Organic Letters, 2008, 10, 1501-1504.	4.6	69
119	Synthesis of 6- and 7-Membered <i>N</i> -Heterocycles Using α-Phenylvinylsulfonium Salts. Organic Letters, 2015, 17, 5044-5047.	4.6	69
120	Highly Selective Aziridination of Imines Using Trimethylsilyldiazomethane and Applications of C-Silylaziridines in Synthesis. Organic Letters, 2000, 2, 4107-4110.	4.6	68
121	Stereodivergent Olefination of Enantioenriched Boronic Esters. Angewandte Chemie - International Edition, 2017, 56, 786-790.	13.8	68
122	Amidine-Promoted Addition of Chloroform to Carbonyl Compounds. Journal of Organic Chemistry, 2000, 65, 7211-7212.	3.2	67
123	Stereocontrolled Synthesis of βâ€Amino Alcohols from Lithiated Aziridines and Boronic Esters. Angewandte Chemie - International Edition, 2009, 48, 1149-1152.	13.8	67
124	Diastereodivergent Synthesis of Trisubstituted Alkenes through Protodeboronation of Allylic Boronic Esters: Application to the Synthesis of the Californian Red Scale Beetle Pheromone. Angewandte Chemie - International Edition, 2012, 51, 12444-12448.	13.8	67
125	Enantiospecific Alkynylation of Alkylboronic Esters. Angewandte Chemie - International Edition, 2016, 55, 4270-4274.	13.8	66
126	Catalytic asymmetric cyclopropanation of electron deficient alkenes mediated by chiral sulfides. Chemical Communications, 1997, , 1785-1786.	4.1	64

#	Article	IF	CITATIONS
127	Asymmetric Sulfur Ylide Reactions with Boranes:  Scope and Limitations, Mechanism and Understanding. Journal of the American Chemical Society, 2007, 129, 14632-14639.	13.7	64
128	Selective uni- and bidirectional homologation of diborylmethane. Chemical Science, 2017, 8, 2898-2903.	7.4	64
129	Chiral bisfunctionalization of substrates: a powerful strategy for the asymmetric synthesis of C2 symmetric compounds and its application to the synthesis of enantiomerically pure trans-1,3-dithiane 1,3-dioxide. Journal of Organic Chemistry, 1992, 57, 6390-6391.	3.2	62
130	(1R,3R)-2-Methylene-1,3-dithiolane 1,3-dioxide: A highly reactive and selective chiral ketene equivalent Journal of Organic Chemistry, 1995, 60, 4962-4963.	3.2	62
131	A New Method for the Preparation of Silyl Enol Ethers from Carbonyl Compounds and (Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner. Journal of the American Chemical Society, 2002, 124, 10300-10301.	13.7	62
132	Highly Diastereoselective Nitrone Cycloaddition onto a Chiral Ketene Equivalent:  Asymmetric Synthesis of Cispentacin. Organic Letters, 2002, 4, 1227-1229.	4.6	62
133	Application of furyl-stabilized sulfur ylides to a concise synthesis of 8a-epi-swainsonine. Chemical Communications, 2008, , 120-122.	4.1	60
134	BF3·OEt2and TMSOTf: A synergistic combination of Lewis acids. Chemical Communications, 2006, , 4434-4436.	4.1	59
135	Stereoselective synthesis of trans-β-lactams by palladium-catalysed carbonylation of vinyl aziridines. Chemical Communications, 2010, 46, 267-269.	4.1	58
136	[2,3]-Sigmatropic rearrangement of allylic sulfur ylides derived from trimethylsilyldiazomethane (TMSD). Tetrahedron Letters, 1999, 40, 8923-8927.	1.4	57
137	Highly Selective Allylborations of Aldehydes Using α,αâ€Disubstituted Allylic Pinacol Boronic Esters. Angewandte Chemie - International Edition, 2014, 53, 6145-6149.	13.8	57
138	Enantiospecific Trifluoromethylâ€Radicalâ€Induced Threeâ€Component Coupling of Boronic Esters with Furans. Angewandte Chemie - International Edition, 2017, 56, 1810-1814.	13.8	56
139	Stereospecific Allylic Functionalization: The Reactions of Allylboronate Complexes with Electrophiles. Journal of the American Chemical Society, 2017, 139, 15324-15327.	13.7	56
140	Difunctionalization of C–C σ-Bonds Enabled by the Reaction of Bicyclo[1.1.0]butyl Boronate Complexes with Electrophiles: Reaction Development, Scope, and Stereochemical Origins. Journal of the American Chemical Society, 2020, 142, 16766-16775.	13.7	56
141	Conjunctive functionalization of vinyl boronate complexes with electrophiles: a diastereoselective three-component coupling. Chemical Communications, 2017, 53, 4922-4925.	4.1	55
142	Regio―and Stereoselective Homologation of 1,2â€Bis(Boronic Esters): Stereocontrolled Synthesis of 1,3â€Điols and Sch 725674. Angewandte Chemie - International Edition, 2016, 55, 14663-14667.	13.8	54
143	The development and use of ketene equivalents in [4+2] cycloadditions for organic synthesis. Tetrahedron, 1999, 55, 293-312.	1.9	53
144	Additions of stabilised and semi-stabilised sulfur ylides to tosyl protected imines: are they under kinetic or thermodynamic control?. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3159-3166.	1.3	53

#	Article	IF	CITATIONS
145	Enantiospecific Synthesis of <i>ortho</i> -Substituted Benzylic Boronic Esters by a 1,2-Metalate Rearrangement/1,3-Borotropic Shift Sequence. Journal of the American Chemical Society, 2017, 139, 9519-9522.	13.7	51
146	Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron Transfer. Angewandte Chemie, 2019, 131, 5753-5757.	2.0	51
147	Hemiaminals as substrates for sulfur ylides: Direct asymmetric syntheses of functionalised pyrrolidines and piperidines. Chemical Communications, 2006, , 2156.	4.1	50
148	Ligand-Induced Control of Câ^'H versus Aliphatic Câ^'C Migration Reactions of Rh Carbenoids. Journal of the American Chemical Society, 2006, 128, 2524-2525.	13.7	50
149	Asymmetric Total Synthesis of Solandelactoneâ€E: Stereocontrolled Synthesis of the 2â€eneâ€1,4â€diol Core through a Lithiation–Borylation–Allylation Sequence. Angewandte Chemie - International Edition, 2010, 49, 6673-6675.	13.8	50
150	An Efficient Synthesis of Imidazolinium Salts Using Vinyl Sulfonium Salts. Organic Letters, 2011, 13, 3060-3063.	4.6	50
151	Asymmetric addition of chiral boron-ate complexes to cyclic iminium ions. Chemical Science, 2014, 5, 602-607.	7.4	50
152	Diastereoselective Synthesis of CF3-Substituted, Epoxide-Fused Heterocycles with β-(Trifluoromethyl)vinylsulfonium Salts. Organic Letters, 2012, 14, 6370-6373.	4.6	49
153	α-Sulfinyl Benzoates as Precursors to Li and Mg Carbenoids for the Stereoselective Iterative Homologation of Boronic Esters. Journal of the American Chemical Society, 2017, 139, 11877-11886.	13.7	49
154	The use of enantiomerically pure ketene dithioacetal bis(sulfoxides) in highly diastereoselective intramolecular nitrone cycloadditions. Application in the total synthesis of the β-amino acid (–)-cispentacin and the first asymmetric synthesis of cis-(3R,4R)-4-amino-pyrrolidine-3-carboxylic acid. Organic and Biomolecular Chemistry, 2003, 1, 684-691.	2.8	48
155	Concise Synthesis of (+)- <i>allo</i> -Kainic Acid <i>via</i> MgI ₂ -Mediated Tandem Aziridine Ring Opening–Formal [3 + 2] Cycloaddition. Organic Letters, 2013, 15, 4250-4253.	4.6	48
156	Enantioselective installation of adjacent tertiary benzylic stereocentres using lithiation–borylation–protodeboronation methodology. Application to the synthesis of bifluranol and fluorohexestrol. Chemical Science, 2015, 6, 3718-3723.	7.4	48
157	Short Enantioselective Total Synthesis of Tatananâ€A and 3â€ <i>epi</i> â€Tatananâ€A Using Assemblyâ€Line Synthesis. Angewandte Chemie - International Edition, 2016, 55, 15920-15924.	13.8	48
158	Synthesis of α-Substituted Vinylsulfonium Salts and Their Application as Annulation Reagents in the Formation of Epoxide- and Cyclopropane-Fused Heterocycles. Journal of Organic Chemistry, 2014, 79, 10226-10239.	3.2	47
159	Application of sulfur ylide mediated epoxidations in the asymmetric synthesis of β-hydroxy-δ-lactones. Synthesis of a mevinic acid analogue and (+)-prelactone B. Tetrahedron, 2004, 60, 9725-9733.	1.9	46
160	The fate of the tert-butylsulfinyl auxiliary after acid-promoted cleavage—a method for recycling t-BuSONH2. Tetrahedron Letters, 2009, 50, 3482-3484.	1.4	46
161	Stereocontrolled Synthesis of Adjacent Acyclic Quaternaryâ€Tertiary Motifs: Application to a Concise Total Synthesis of (â~)â€Filiformin. Angewandte Chemie - International Edition, 2014, 53, 5552-5555.	13.8	46
162	Visibleâ€Lightâ€Driven Strainâ€Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters. Angewandte Chemie - International Edition, 2020, 59, 6525-6528.	13.8	46

#	Article	IF	CITATIONS
163	Asymmetric epoxidation using chiral sulfur ylides. Tetrahedron: Asymmetry, 1994, 5, 723-730.	1.8	45
164	A Novel Procedure for the Synthesis of Epoxides:Â Application of Simmonsâ^'Smith Reagents toward Epoxidation. Journal of Organic Chemistry, 1997, 62, 8628-8629.	3.2	45
165	Synthesis of Prostaglandin Analogues, Latanoprost and Bimatoprost, Using Organocatalysis via a Key Bicyclic Enal Intermediate. Organic Letters, 2015, 17, 504-507.	4.6	45
166	A Novel Catalytic Cycle for the Synthesis of Epoxides Using Sulfur Ylides. Chemistry - A European Journal, 1996, 2, 1024-1030.	3.3	44
167	Visibleâ€Lightâ€Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γâ€Amino Boronic Esters. Angewandte Chemie, 2018, 130, 2177-2181.	2.0	44
168	αâ€Selective Ringâ€Opening Reactions of Bicyclo[1.1.0]butyl Boronic Ester with Nucleophiles. Angewandte Chemie - International Edition, 2021, 60, 212-216.	13.8	44
169	The use of chiral sulfides in catalytic asymmetric epoxidation. Tetrahedron: Asymmetry, 1995, 6, 2557-2564.	1.8	43
170	Aminals as Substrates for Sulfur Ylides:  A Synthesis of Functionalized Aziridines and N-Heterocycles. Organic Letters, 2007, 9, 2099-2102.	4.6	42
171	Asymmetric Synthesis of 1-Heteroaryl-1-arylalkyl Tertiary Alcohols and 1-Pyridyl-1-arylethanes by Lithiation–Borylation Methodology. Organic Letters, 2013, 15, 1346-1349.	4.6	42
172	Lithiation–borylation methodology in the total synthesis of natural products. , 2022, 1, 117-126.		42
173	Additions of benzylsulfonium ylides to aldehydes and ketones: are they under kinetic or thermodynamic control?. Journal of the Chemical Society Perkin Transactions 1, 1997, , 593-600.	0.9	41
174	Ring-Expansion Induced 1,2-Metalate Rearrangements: Highly Diastereoselective Synthesis of Cyclobutyl Boronic Esters. Journal of the American Chemical Society, 2020, 142, 5515-5520.	13.7	41
175	Phenylthio(Phs) migration in the stereocontrolled synthesis of allylic alcohols with 1, 4 related chiral centres Tetrahedron Letters, 1986, 27, 101-104.	1.4	40
176	A Formal Asymmetric Synthesis of (+)-Anatoxin-a Using an Enantioselective Deprotonation Strategy on an Eight-Membered Ring. Angewandte Chemie - International Edition, 1999, 38, 1985-1986.	13.8	40
177	Optimization of the Mizorokiâ	2.7	40
178	Tandem Allylboration–Prins Reaction for the Rapid Construction of Substituted Tetrahydropyrans: Application to the Total Synthesis of (â^)â€Clavosolideâ€A. Angewandte Chemie - International Edition, 2016, 55, 2498-2502.	13.8	40
179	Delineation of the factors governing reactivity and selectivity in epoxide formation from ammonium ylides and aldehydes. Organic and Biomolecular Chemistry, 2006, 4, 621.	2.8	39
180	Asymmetric Lithiationâ^'Substitution of Amines Involving Rearrangement of Borates. Organic Letters, 2008, 10, 141-143.	4.6	39

#	Article	IF	CITATIONS
181	Enantioselective Synthesis of the Cyclopiazonic Acid Family Using Sulfur Ylides. Angewandte Chemie - International Edition, 2018, 57, 1346-1350.	13.8	39
182	Selective Coupling of 1,2â€Bisâ€Boronic Esters at the more Substituted Site through Visible‣ight Activation of Electron Donor–Acceptor Complexes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	39
183	Tandem Formation and [2,3] Rearrangement of Methylene Ammonium Ylides Derived from Amines and the Simmonsâ `Smith Reagent. Organic Letters, 2003, 5, 1757-1760.	4.6	38
184	Highly Diastereoselective Simmonsâ^'Smith Cyclopropanation of Allylic Amines. Organic Letters, 2003, 5, 4417-4420.	4.6	38
185	Efficient Synthesis of Cyclopropaneâ€Fused Heterocycles with Bromoethylsulfonium Salt. Chemistry - A European Journal, 2013, 19, 10827-10831.	3.3	38
186	Stereospecific conversion of alcohols into pinacol boronic esters using lithiation–borylation methodology with pinacolborane. Chemical Communications, 2014, 50, 4053-4055.	4.1	38
187	Divergent, Stereospecific Mono―and Difluoromethylation of Boronic Esters. Angewandte Chemie - International Edition, 2020, 59, 8502-8506.	13.8	38
188	Highly diastereoselective 1,3-dipolar cycloaddition reactions of trans-2-methylene-1,3-dithiolane 1,3-dioxide with 3-oxidopyridinium and 3-oxidopyrylium betaines: a route to the tropane skeleton. Organic and Biomolecular Chemistry, 2003, 1, 1884.	2.8	37
189	Sulfinamides as Highly Effective Amine Protecting Groups and Their Use in the Conversion of Amino Alcohols into Morpholines. European Journal of Organic Chemistry, 2011, 2011, 3156-3164.	2.4	37
190	Highly Diastereoselective Epoxidation of Ketene Dithioacetal Dioxides:Â A New Approach to the Asymmetric Synthesis of α-Amino Amides. Journal of Organic Chemistry, 1998, 63, 7128-7129.	3.2	36
191	Enantiodivergent Synthesis of Allenes by Pointâ€ŧoâ€Axial Chirality Transfer. Angewandte Chemie - International Edition, 2018, 57, 8203-8208.	13.8	36
192	Highly stereoselective addition reactions of metallated trans-1,3-dithiane-1,3-dioxide to aldehydes. Tetrahedron Letters, 1991, 32, 7743-7746.	1.4	35
193	Palladium-Catalyzed Substitution of Unsaturated Lactones. Application to the Synthesis of Carbocyclic Polyoxins and Nikkomycins. Journal of Organic Chemistry, 1996, 61, 1192-1193.	3.2	35
194	A novel procedure for the synthesis of aziridines: application of Simmons–Smith reagents to aziridination. Tetrahedron Letters, 2001, 42, 1587-1589.	1.4	35
195	Synthesis of Functionalized Cyclopropanes from Carboxylic Acids by a Radical Addition–Polar Cyclization Cascade. Angewandte Chemie, 2018, 130, 15656-15660.	2.0	35
196	Anion Reactions of 1,3-Dithiane 1,3-Dioxide with Carbonyl Compounds: High Diastereoselectivity with Aromatic Aldehydes under Conditions of Equilibrium Control. Journal of Organic Chemistry, 1995, 60, 2174-2182.	3.2	34
197	A simple, user-friendly process for the homologation of aldehydes using tosylhydrazone salts. Tetrahedron Letters, 2000, 41, 10327-10331.	1.4	34
198	Title is missing!. Angewandte Chemie, 2003, 115, 3396-3400.	2.0	34

#	Article	IF	CITATIONS
199	Structure and Reactivity of Boron-Ate Complexes Derived from Primary and Secondary Boronic Esters. Organic Letters, 2015, 17, 2614-2617.	4.6	34
200	Methylenespiro[2.3]hexanes via Nickel-Catalyzed Cyclopropanations with [1.1.1]Propellane. Journal of the American Chemical Society, 2019, 141, 20325-20334.	13.7	34
201	A palladium catalysed cyclisation–carbonylation of bromodienes: control in carbonylation over facile β-hydride eliminationElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b2/b201311h/. Chemical Communications, 2002, , 972-973.	4.1	33
202	Asymmetric synthesis of avenaciolide via cascade palladium catalysed cyclisation–carbonylation of bromodienes. Chemical Communications, 2004, , 1232-1233.	4.1	33
203	Lithiation and Reactions of Stilbene Oxides:  Synthetic Utility. Organic Letters, 2004, 6, 4191-4194.	4.6	33
204	Application of the lithiation–borylation reaction to the rapid and enantioselective synthesis of the bisabolane family of sesquiterpenes. Chemical Communications, 2012, 48, 9230.	4.1	33
205	Reagent-Controlled Lithiation–Borylation. Topics in Organometallic Chemistry, 2015, , 271-295.	0.7	33
206	Enantiospecific Alkynylation of Alkylboronic Esters. Angewandte Chemie, 2016, 128, 4342-4346.	2.0	33
207	Enantiospecific Threeâ€Component Alkylation of Furan and Indole. Chemistry - A European Journal, 2018, 24, 4279-4282.	3.3	33
208	Extension of ring closing metathesis methodology to the synthesis of carbocyclic methyl and silyl enol ethersElectronic supplementary information (ESI) available: full experimental details. See http://www.rsc.org/suppdata/cc/b2/b208445g/. Chemical Communications, 2002, , 2490-2491.	4.1	32
209	Highly Enantioselective Oxidations of Ketene Dithioacetals Leading to Trans Bis-sulfoxides. Journal of Organic Chemistry, 2003, 68, 4087-4090.	3.2	32
210	Asymmetric Catalysis Special Feature Part I: Effect of sulfide structure on enantioselectivity in catalytic asymmetric epoxidation of aldehydes: Mechanistic insights and implications. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5467-5471.	7.1	32
211	Synthesis and Application of Easily Recyclable Thiomorpholines for Use in Sulfur Ylide Mediated Asymmetric Epoxidation of Aldehydes. Chemistry - an Asian Journal, 2008, 3, 1657-1663.	3.3	32
212	Stereocontrolled asymmetric synthesis of syn-E-1,4-diol-2-enes using allyl boronates and its application in the total synthesis of solandelactone F. Organic and Biomolecular Chemistry, 2012, 10, 1795.	2.8	32
213	The total synthesis of (â^)-aplysin via a lithiation–borylation–propenylation sequence. Tetrahedron, 2012, 68, 7598-7604.	1.9	32
214	Reoptimization of the Organocatalyzed Double Aldol Domino Process to a Key Enal Intermediate and Its Application to the Total Synthesis of Δ ¹² â€Prostaglandin J ₃ . Chemistry - A European Journal, 2018, 24, 9542-9545.	3.3	32
215	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie - International Edition, 2020, 59, 22403-22407.	13.8	32
216	Trifluoromethanesulfonic Acid, an Efficient Catalyst for the Hetero Diels-Alder Reaction and an Improved Synthesis of Mefrosol Tetrahedron Letters, 1997, 38, 2569-2572.	1.4	31

#	Article	IF	CITATIONS
217	Synthesis of quinine and quinidine using sulfur ylide-mediated asymmetric epoxidation as a key step. Tetrahedron: Asymmetry, 2010, 21, 1771-1776.	1.8	31
218	Stereoselective Total Synthesis of (+)â€Giganin and Its C10 Epimer by Using Late‧tage Lithiation–Borylation Methodology. Angewandte Chemie - International Edition, 2013, 52, 2503-2506.	13.8	31
219	Synthesis of 3-Aryl-1-aminopropane Derivatives: Lithiation–BorylÂation–Ring-Opening of Azetidinium Ions. Synthesis, 2016, 48, 3241-3253.	2.3	31
220	Stereodivergent Olefination of Enantioenriched Boronic Esters. Angewandte Chemie, 2017, 129, 804-808.	2.0	31
221	Ringâ€Opening Lithiation–Borylation of 2â€Trifluoromethyl Oxirane: A Route to Versatile Tertiary Trifluoromethyl Boronic Esters. Angewandte Chemie - International Edition, 2020, 59, 1187-1191.	13.8	31
222	Photoinduced Fragmentation Borylation of Cyclic Alcohols and Hemiacetals. Organic Letters, 2020, 22, 7213-7218.	4.6	31
223	A practical synthesis of a [2.2.1] bicyclic chiral sulfide for asymmetric transformations. Tetrahedron, 2006, 62, 11297-11303.	1.9	30
224	Homologation of Boronic Esters with Organolithium Compounds: A Computational Assessment of Mechanism. Journal of Organic Chemistry, 2014, 79, 12148-12158.	3.2	30
225	Enantiospecific sp ² –sp ³ Coupling of <i>ortho</i> ―and <i>para</i> â€Phenols with Secondary and Tertiary Boronic Esters. Angewandte Chemie - International Edition, 2017, 56, 16318-16322.	13.8	30
226	Odd–even alternations in helical propensity of a homologous series of hydrocarbons. Nature Chemistry, 2020, 12, 475-480.	13.6	30
227	Complexes containing a Lewis acid and BrÃ,nsted acid for the catalytic asymmetric Diels-Alder reaction. Tetrahedron: Asymmetry, 1995, 6, 1301-1306.	1.8	29
228	Photoredox atalyzed Cyclobutane Synthesis by a Deboronative Radical Addition–Polar Cyclization Cascade. Angewandte Chemie, 2019, 131, 3910-3914.	2.0	29
229	Highly regioselective and diastereoselective epoxidation of allylic amines with Oxone. Chemical Communications, 2005, , 3448.	4.1	28
230	Is phenyl a good migrating group in the rearrangement of organoborates generated from sulfur ylides?. Chemical Communications, 2006, , 741.	4.1	28
231	An Efficient Synthesis of Azetidines with (2-Bromoethyl)sulfonium Triflate. Synthesis, 2012, 44, 1584-1590.	2.3	28
232	Short Convergent Synthesis of the Mycolactone Core Through Lithiation–Borylation Homologations. Chemistry - A European Journal, 2015, 21, 13900-13903.	3.3	28
233	Alkynyl Moiety for Triggering 1,2â€Metallate Shifts: Enantiospecific sp 2 –sp 3 Coupling of Boronic Esters with p â€Arylacetylenes. Angewandte Chemie - International Edition, 2017, 56, 9752-9756. 	13.8	28
234	Diastereoselective Photoredox-Catalyzed [3 + 2] Cycloadditions of <i>N</i> -Sulfonyl Cyclopropylamines with Electron-Deficient Olefins. Organic Letters, 2021, 23, 3038-3042.	4.6	28

#	Article	IF	CITATIONS
235	Stereocontrolled Total Synthesis of (â^')â€Stemaphylline. Angewandte Chemie, 2017, 129, 2159-2163.	2.0	27
236	Divergent, Strainâ€Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angewandte Chemie - International Edition, 2021, 60, 7360-7365.	13.8	27
237	Enantiospecific Trifluoromethylâ€Radicalâ€Induced Threeâ€Component Coupling of Boronic Esters with Furans. Angewandte Chemie, 2017, 129, 1836-1840.	2.0	26
238	Stereocontrolled Synthesis of Polypropionate Fragments based on a Building Block Assembly Strategy using Lithiationâ€Borylation Methodologies. Chemistry - A European Journal, 2018, 24, 730-735.	3.3	26
239	Studies on the Asymmetric Oxidation of Ester Derivatives of 1,3-Dithiane-2-carboxylates. Asymmetric Synthesis oftrans-1,3-Dithiane 1,3-Dioxide. Journal of Organic Chemistry, 1998, 63, 7306-7310.	3.2	25
240	Synthesis and evaluation of a broad range of chiral sulfides for asymmetric sulfur ylide epoxidation of aldehydes. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2604-2622.	1.3	25
241	Investigation of the Deprotonative Generation and Borylation of Diamine-Ligated α-Lithiated Carbamates and Benzoates by in Situ IR spectroscopy. Journal of the American Chemical Society, 2018, 140, 14677-14686.	13.7	25
242	Stereospecific 1,2â€Migrations of Boronate Complexes Induced by Electrophiles. Angewandte Chemie, 2020, 132, 17005-17018.	2.0	25
243	1,3â€Difunctionalizations of [1.1.1]Propellane via 1,2â€Metallate Rearrangements of Boronate Complexes. Angewandte Chemie, 2020, 132, 3945-3949.	2.0	25
244	Highly Diastereoselective Dielsâ^'Alder Reactions of Baylisâ^'Hillman Adducts. Organic Letters, 2005, 7, 2555-2557.	4.6	24
245	A new manifold for the Morita reaction: diene synthesis from simple aldehydes and acrylates/acrylonitrile mediated by phosphines. Chemical Communications, 2007, , 4128.	4.1	24
246	Decarboxylative Conjunctive Cross oupling of Vinyl Boronic Esters using Metallaphotoredox Catalysis. Angewandte Chemie, 2020, 132, 4405-4409.	2.0	24
247	Synthesis of sulfonium salts by sulfide alkylation; an alternative approach. Tetrahedron Letters, 1994, 35, 8659-8660.	1.4	23
248	Sulphur ylide-mediated stereoselective synthesis of a stable ferrocenyl epoxide. Tetrahedron Letters, 2002, 43, 3475-3479.	1.4	23
249	Reactions of silyl-stabilised sulfur ylides with organoboranes: enantioselectivity, mechanism, and understanding. Organic and Biomolecular Chemistry, 2008, 6, 1185.	2.8	23
250	Remote Chiral Induction in Vinyl Sulfonium Saltâ€Mediated Ring Expansion of Hemiaminals into Epoxideâ€Fused Azepines. Chemistry - an Asian Journal, 2011, 6, 372-375.	3.3	23
251	Short Stereoselective Synthesis of the <i>Phytophthora</i> Universal Mating Hormone α1 Using Lithiation/Borylation Reactions. Angewandte Chemie - International Edition, 2014, 53, 4382-4385.	13.8	23
252	CD1b Tetramers Identify T Cells that Recognize Natural and Synthetic Diacylated Sulfoglycolipids from Mycobacterium tuberculosis. Cell Chemical Biology, 2018, 25, 392-402.e14.	5.2	23

#	Article	IF	CITATIONS
253	lridium-Catalyzed Enantioselective Synthesis of α-Chiral Bicyclo[1.1.1]pentanes by 1,3-Difunctionalization of [1.1.1]Propellane. Organic Letters, 2020, 22, 5650-5655.	4.6	23
254	Highly Diastereoselective Strain-Increase Allylborations: Rapid Access to Alkylidenecyclopropanes and Alkylidenecyclobutanes. Journal of the American Chemical Society, 2021, 143, 7462-7470.	13.7	23
255	Anion Reactions oftrans-1,3-Dithiolane 1,3-Dioxide with Aldehydes and Comparison withtrans-1,3-Dithiane 1,3-Dioxide. Journal of Organic Chemistry, 1997, 62, 1139-1145.	3.2	22
256	Carboxylate-stabilised sulfur ylides (thetin salts) in asymmetric epoxidation for the synthesis of glycidic acids. Mechanism and implications. Organic and Biomolecular Chemistry, 2005, 3, 1419.	2.8	22
257	Synthesis of <i>N</i> â€Vinyloxazolidinones and Morpholines from Amino Alcohols and Vinylsulfonium Salts: Analysis of the Outcome's Dependence on the Nâ€Protecting Group by Nanospray Mass Spectrometry. European Journal of Organic Chemistry, 2012, 2012, 160-166.	2.4	22
258	Activation of the S _N 2 Reaction by Adjacent π Systems: The Critical Role of Electrostatic Interactions and of Dissociative Character. Journal of the American Chemical Society, 2016, 138, 734-737.	13.7	22
259	Synthesis of Alfaprostol and PGF _{2î±} through 1,4-Addition of an Alkyne to an Enal Intermediate as the Key Step. Organic Letters, 2017, 19, 6008-6011.	4.6	22
260	Vinylidene Homologation of Boronic Esters and its Application to the Synthesis of the Proposed Structure of Machillene. Angewandte Chemie - International Edition, 2019, 58, 15268-15272.	13.8	22
261	Strain Release of Donor–Acceptor Cyclopropyl Boronate Complexes. Organic Letters, 2019, 21, 3412-3416.	4.6	22
262	Synthesis of epoxides from aldehydes and tosylhydrazone salts catalysed by triphenylarsine: complete trans selectivity for all combinations of coupling partnersElectronic supplementary information (ESI) available: new compounds. See http://www.rsc.org/suppdata/cc/b2/b204252e/. Chemical Communications, 2002, , 1514-1515.	4.1	21
263	Photoinduced Deoxygenative Borylations of Aliphatic Alcohols. Angewandte Chemie, 2019, 131, 19006-19010.	2.0	21
264	Stereocontrolled Total Synthesis of Bastimolide B Using Iterative Homologation of Boronic Esters. Journal of the American Chemical Society, 2022, 144, 7995-8001.	13.7	21
265	Regio―and Stereoselective Homologation of 1,2â€Bis(Boronic Esters): Stereocontrolled Synthesis of 1,3â€Diols and Sch 725674. Angewandte Chemie, 2016, 128, 14883-14887.	2.0	20
266	Direct Observation of Reactive Intermediates by Time-Resolved Spectroscopy Unravels the Mechanism of a Radical-Induced 1,2-Metalate Rearrangement. Journal of the American Chemical Society, 2021, 143, 17191-17199.	13.7	20
267	Dual Nickel/Photoredox atalyzed Siteâ€6elective Cross oupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
268	Enantioenriched synthesis of Escitalopram using lithiation–borylation methodology. Tetrahedron, 2011, 67, 10082-10088.	1.9	19
269	Short Enantioselective Total Synthesis of Tatananâ€A and 3â€ <i>epi</i> â€Tatananâ€A Using Assemblyâ€Line Synthesis. Angewandte Chemie, 2016, 128, 16152-16156.	2.0	19
270	Strainâ€Release Driven Spirocyclization of Azabicyclo[1.1.0]butyl Ketones. Angewandte Chemie - International Edition, 2021, 60, 11824-11829.	13.8	19

#	Article	IF	CITATIONS
271	Separation of pyrrolidine allylation products by diastereoselective enzymatic ester hydrolysis. Tetrahedron Letters, 2005, 46, 945-947.	1.4	18
272	Readily Synthesized Chiral Sulfides as Reagents for Asymmetric Epoxidation. Chemistry - an Asian Journal, 2006, 1, 438-444.	3.3	18
273	Synthesis of highly functionalized 2,5-disubstituted pyrrolidines via an aza-Morita–Baylis–Hillman-type reaction. Tetrahedron, 2010, 66, 6293-6299.	1.9	18
274	<i>ortho</i> â€Directing Chromium Arene Complexes as Efficient Mediators for Enantiospecific C(sp ²)–C(sp ³) Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2018, 57, 1082-1086.	13.8	18
275	Stereo- and Regiocontrolled Methylboration of Terminal Alkynes. Organic Letters, 2018, 20, 3136-3139.	4.6	18
276	Enantiospecific Synthesis of <i>ortho</i> â€Substituted 1,1â€Diarylalkanes by a 1,2â€Metalate Rearrangement/ <i>anti</i> â€S _{<i>N</i>} 2′ Elimination/Rearomatizing Allylic Suzuki–Miyaura Reaction Sequence. Angewandte Chemie - International Edition, 2019, 58, 1366-1370.	13.8	18
277	Visibleâ€Lightâ€Driven Strainâ€Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters. Angewandte Chemie, 2020, 132, 6587-6590.	2.0	18
278	An Improved Resolution Of 2-Methyl Piperidine And Its Use in The Synthesis Of Homochiral Trans-2,6-Dialkyl Piperidines. Synthetic Communications, 1999, 29, 1747-1756.	2.1	17
279	Application of the Chiral Acyl Anion Equivalent,trans-1,3-Dithiane 1,3-Dioxide, to an Asymmetric Synthesis of (R)-Salbutamol. Journal of Organic Chemistry, 2002, 67, 8618-8621.	3.2	17
280	Ketene Claisen rearrangement of camphor-derived 1,3-oxathianes: complete control of tertiary and quaternary stereogenic centresElectronic supplementary information (ESI) available: experimental data. See http://www.rsc.org/suppdata/cc/b2/b206857e/. Chemical Communications, 2002, , 2534-2535.	4.1	17
281	Stereocontrolled Synthesis of Adjacent Acyclic Quaternaryâ€Tertiary Motifs: Application to a Concise Total Synthesis of (â^)â€Filiformin. Angewandte Chemie, 2014, 126, 5658-5661.	2.0	17
282	Diastereodivergent Synthesis of Cyclopentyl Boronic Esters Bearing Contiguous Fully Substituted Stereocenters. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
283	Ylide-Based Reactions. , 0, , 357-389.		16
284	Enantioselective synthesis of (<i>R</i>)-tolterodine using lithiation/borylation–protodeboronation methodology. Canadian Journal of Chemistry, 2012, 90, 965-974.	1.1	16
285	Stereocontrolled Synthesis of 1,5â€Stereogenic Centers through Threeâ€Carbon Homologation of Boronic Esters. Angewandte Chemie - International Edition, 2014, 53, 9846-9850.	13.8	16
286	Direct Synthesis of Functionalized Allylic Boronic Esters from Allylic Alcohols and Inexpensive Reagents and Catalysts. Synthesis, 2008, 2008, 2293-2297.	2.3	15
287	Benzylic Boron Reagents Behaving as Allylic Boron Reagents towards Aldehydes: A New Asymmetric Reaction Leading to Homoallylic Alcohols with Concomitant Dearomatisation. Chemistry - A European Journal, 2010, 16, 9741-9745.	3.3	15
288	(2â€Bromoethyl)sulfonium Trifluoromethanesulfonates in Stereoselective Annulation Reactions for the Formation of Fused Bicyclic Epoxides and Aziridines. Helvetica Chimica Acta, 2012, 95, 2384-2398.	1.6	15

#	Article	IF	CITATIONS
289	Asymmetric Synthesis of Tertiary Alcohols and Thiols via Nonstabilized Tertiary αâ€Oxy―and αâ€Thioâ€Substituted Organolithium Species. Angewandte Chemie - International Edition, 2017, 56, 10835-10839.	13.8	15
290	Triphenylphosphine and sodium iodide: a new catalyst combination to rival precious metal complexes in visible light photoredox catalysis. Science China Chemistry, 2019, 62, 1083-1084.	8.2	15
291	Strainâ€Releaseâ€Driven Friedel–Crafts Spirocyclization of Azabicyclo[1.1.0]butanes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
292	QM and QM/MM studies of selectivity in organic and bioorganic chemistry. Journal of Physical Organic Chemistry, 2006, 19, 608-615.	1.9	14
293	Alkynyl Moiety for Triggering 1,2â€Metallate Shifts: Enantiospecific sp 2 –sp 3 Coupling of Boronic Esters with p â€Arylacetylenes. Angewandte Chemie, 2017, 129, 9884-9888.	2.0	14
294	Synthesis of new, highly hindered C2-symmetric trans-(2S,5S)-disubstituted pyrrolidines. Tetrahedron: Asymmetry, 2002, 13, 87-93.	1.8	13
295	Enantiodivergent Synthesis of Allenes by Pointâ€ŧoâ€Axial Chirality Transfer. Angewandte Chemie, 2018, 130, 8335-8340.	2.0	13
296	Studies on the Lithiation, Borylation, and 1,2â€Metalate Rearrangement of <i>O</i> ycloalkyl 2,4,6â€Triisopropylbenzoates. Angewandte Chemie - International Edition, 2021, 60, 11436-11441.	13.8	13
297	Enantiospecific sp ² –sp ³ Coupling of <i>ortho</i> ―and <i>para</i> â€Phenols with Secondary and Tertiary Boronic Esters. Angewandte Chemie, 2017, 129, 16536-16540.	2.0	12
298	Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene Sâ€Oxides with Boronic Esters. Angewandte Chemie - International Edition, 2021, 60, 25313-25317.	13.8	12
299	Trappingâ€Enrichment Multiâ€dimensional Liquid Chromatography with Onâ€Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
300	The use of enantiomerically pure ketene dithioacetal bis(sulfoxides) in highly diastereoselective intramolecular nitrone cycloadditions. Application in the total synthesis of the beta-amino acid (-)-cispentacin and the first asymmetric synthesis of cis-(3R,4R)-4-amino-pyrrolidine-3-carboxylic acid. Organic and Biomolecular Chemistry 2003, 1, 684-91	2.8	12
301	Palladium catalysed cyclisation–carbonylation of enynes to give cyclic γ,Î′-unsaturated acidsElectronic supplementary information (ESI) available: data for novel compounds. See http://www.rsc.org/suppdata/cc/b3/b300719g/. Chemical Communications, 2003, , 1046-1047.	4.1	11
302	One-pot synthesis of 2,3,4,5,6-pentasubstituted tetrahydropyrans using lithiation–borylation, allylation and Prins cyclisation reactions. Tetrahedron Letters, 2013, 54, 49-51.	1.4	11
303	Tandem Allylboration–Prins Reaction for the Rapid Construction of Substituted Tetrahydropyrans: Application to the Total Synthesis of (â^') lavosolide A. Angewandte Chemie, 2016, 128, 2544-2548.	2.0	11
304	Chiral Aniline Synthesis via Stereospecific C(sp3)–C(sp2) Coupling of Boronic Esters with Aryl Hydrazines. Organic Letters, 2018, 20, 6144-6147.	4.6	11
305	Prostaglandin Total Synthesis Enabled by the Organocatalytic Dimerization of Succinaldehyde. Chemical Record, 2020, 20, 936-947	5.8	11
306	Sequential Photocatalytic Reactions for the Diastereoselective Synthesis of Cyclobutane Scaffolds. Organic Letters, 2022, 24, 137-141.	4.6	11

#	Article	IF	CITATIONS
307	Dimethylsulfonium fluoren-9-ide: solution structure and dynamic behaviour of a semi-stabilised sulfonium ylide. Journal of the Chemical Society Perkin Transactions 1, 1997, , 2811-2813.	0.9	10
308	Reagent controlled addition of chiral sulfur ylides to chiral aldehydes. Beilstein Journal of Organic Chemistry, 2005, 1, 4.	2.2	10
309	Divergent, Stereospecific Mono―and Difluoromethylation of Boronic Esters. Angewandte Chemie, 2020, 132, 8580-8584.	2.0	10
310	Synthesis of Isothiocineole and Application in Multigram-Scale Sulfur Ylide Mediated Asymmetric Epoxidation and Aziridination. Synthesis, 2018, 50, 3337-3343.	2.3	9
311	Enantioselective Total Synthesis of (â^')â€Finerenone Using Asymmetric Transfer Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 23107-23111.	13.8	9
312	Synthesis, Stability, and Biological Studies of Fluorinated Analogues of Thromboxane A ₂ . ACS Central Science, 2020, 6, 995-1000.	11.3	9
313	Origin of stereocontrol in the Matteson reaction: Importance of attractive electrostatic interactions. Tetrahedron, 2021, 78, 131810.	1.9	9
314	Divergent, Strainâ€Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angewandte Chemie, 2021, 133, 7436-7441.	2.0	9
315	Stereochemical control in the synthesis of tetrahydrofurans by cyclisation of diols with [1,2]-phenylsulfanyl migration. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 533-546.	1.3	8
316	Complex Boron-Containing Molecules through a 1,2-Metalate Rearrangement/anti-S N 2′ Elimination/Cycloaddition Reaction Sequence. Synlett, 2019, 30, 449-453.	1.8	8
317	Ringâ€Opening Lithiation–Borylation of 2â€Trifluoromethyl Oxirane: A Route to Versatile Tertiary Trifluoromethyl Boronic Esters. Angewandte Chemie, 2020, 132, 1203-1207.	2.0	8
318	Total Synthesis of Thromboxane B ₂ via a Key Bicyclic Enal Intermediate. Organic Letters, 2020, 22, 6505-6509.	4.6	8
319	αâ€Selective Ringâ€Opening Reactions of Bicyclo[1.1.0]butyl Boronic Ester with Nucleophiles. Angewandte Chemie, 2021, 133, 214-218.	2.0	8
320	Synthesis of Dysoxylactam A Using Iterative Homologation of Boronic Esters. Asian Journal of Organic Chemistry, 2021, 10, 2338-2341.	2.7	8
321	(â^')-Cytisine: Access to a stereochemically defined and functionally flexible piperidine scaffold. Organic and Biomolecular Chemistry, 2018, 16, 5823-5832.	2.8	7
322	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie, 2020, 132, 22589-22593.	2.0	7
323	Strainâ€Release Driven Spirocyclization of Azabicyclo[1.1.0]butyl Ketones. Angewandte Chemie, 2021, 133, 11930-11935.	2.0	7
324	Conformationally Controlled Linear and Helical Hydrocarbons Bearing Extended Side Chains. Journal of the American Chemical Society, 2021, 143, 16682-16692.	13.7	7

#	Article	IF	CITATIONS
325	Chiral Ketene Equivalents for Use in Asymmetric Synthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 74, 407-408.	1.6	6
326	Ring-Opening of NH-Aziridines with Thiols in Ionic Liquids: Application to the Synthesis of Aminosulfide Catalysts for Asymmetric Epoxidation of Aldehydes. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1250-1272.	1.6	6
327	<i>ortho</i> â€Directing Chromium Arene Complexes as Efficient Mediators for Enantiospecific C(sp ²)–C(sp ³) Crossâ€Coupling Reactions. Angewandte Chemie, 2018, 130, 1094-1098.	2.0	6
328	Vinylidene Homologation of Boronic Esters and its Application to the Synthesis of the Proposed Structure of Machillene. Angewandte Chemie, 2019, 131, 15412-15416.	2.0	6
329	Studies on the Lithiation, Borylation, and 1,2â€Metalate Rearrangement of O â€Cycloalkyl 2,4,6â€Triisopropylbenzoates. Angewandte Chemie, 2021, 133, 11537-11542.	2.0	6
330	Selective Coupling of 1,2â€Bisâ€Boronic Esters at the more Substituted Site through Visibleâ€Light Activation of Electron Donor–Acceptor Complexes. Angewandte Chemie, 0, , .	2.0	6
331	New uses for old building blocks. Nature Chemistry, 2009, 1, 433-434.	13.6	5
332	Enantioselective Synthesis of the Cyclopiazonic Acid Family Using Sulfur Ylides. Angewandte Chemie, 2018, 130, 1360-1364.	2.0	5
333	Situ Generation of the Diazo Compound We thank Avecia (M.P.), the EPSRC (M.F.), the EU for a Marie Curie Fellowship (E.A.; HPMF-CT-1999-00076), Lu'an Teacher's College and the Education Minister of The Peoples Republic of China (C.F.), and Sheffield University for financial support. We thank Dr. J. Blacker (Avecia), Dr. R. V. H. Jones (Zeneca Agrochemicals), and Dr. R. Fieldhouse (Zeneca Agrochemicals) for	13.8	5
334	Enantiospecific Synthesis of <i>ortho</i> â€Substituted 1,1â€Diarylalkanes by a 1,2â€Metalate Rearrangement/ <i>anti</i> â€S _{<i>N</i>} 2′ Elimination/Rearomatizing Allylic Suzuki–Miyaura Reaction Sequence. Angewandte Chemie, 2019, 131, 1380-1384.	2.0	4
335	Strainâ€Releaseâ€Driven Friedel–Crafts Spirocyclization of Azabicyclo[1.1.0]butanes. Angewandte Chemie, 2022, 134, .	2.0	4
336	Rearrangements of Organozinc Compounds. , 0, , 595-639.		3
337	Total Syntheses of Solandelactones E and F. Strategies and Tactics in Organic Synthesis, 2012, 8, 1-23.	0.1	3
338	Palladium-Catalyzed Reactions of Allylic Boronic Esters with Nucleophiles: Novel Umpolung Reactivity. Synlett, 2015, 26, 1567-1572.	1.8	3
339	Revising the structure of a new eicosanoid from human platelets to 8,9–11,12-diepoxy-13-hydroxyeicosadienoic acid. Journal of Biological Chemistry, 2019, 294, 9225-9238.	3.4	3
340	Trappingâ€Enrichment Multiâ€dimensional Liquid Chromatography with Onâ€Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angewandte Chemie, 2022, 134, thic Asymmetric Synthesis of Enovides from Aldebydes Using Sulfur Yildes with In Situ	2.0	3
341	Generation of Diazocompounds We thank the EPSRC (K.M.L., M.J.P., J.R.S.), Avecia for the support of a studentship (M.P.), the EU for a Marie Curie Fellowship (E.A.; HPMF-CT-1999-00076), and Sheffield University for financial support. We thank Dr. J. Blacker (Avecia), Dr. R. V. H. Jones (Zeneca) Tj ETQq1 1 0.784314	4 rg <mark>B18</mark> /Ove	erlőck 10 Ti
342	Angewandte Chemie - International Edition, 2001, 40, 1430-1433. Asymmetric Synthesis and Cycloaddition Chemistry of Trans-2-Methylene-1,3-Dithiolane 1,3-Dioxide. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 337-338.	1.6	2

#	Article	IF	CITATIONS
343	The Story behind "Synergy of Synthesis, Computation, and NMR Reveals Correct Baulamycin Structures― Biochemistry, 2017, 56, 6177-6178.	2.5	2
344	Total synthesis of (â^')-α-cyclopiazonic acid: a study in perseverance. Strategies and Tactics in Organic Synthesis, 2019, 14, 1-33.	0.1	2
345	Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene Sâ€Oxides with Boronic Esters. Angewandte Chemie, 0, , .	2.0	2
346	Diastereodivergent Synthesis of Cyclopentyl Boronic Esters Bearing Contiguous Fully Substituted Stereocenters. Angewandte Chemie, 2022, 134, .	2.0	2
347	Dual Nickel/Photoredoxâ€Catalyzed Siteâ€Selective Crossâ€Coupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie, 0, , .	2.0	2
348	Cover Picture: Enantioselective Construction of Quaternary Stereogenic Centers from Tertiary Boronic Esters: Methodology and Applications (Angew. Chem. Int. Ed. 16/2011). Angewandte Chemie - International Edition, 2011, 50, 3575-3575.	13.8	1
349	Asymmetric Synthesis of Tertiary Alcohols and Thiols via Nonstabilized Tertiary αâ€Oxy―and αâ€Thioâ€Substituted Organolithium Species. Angewandte Chemie, 2017, 129, 10975-10979.	2.0	1
350	Enantioselective Total Synthesis of (â^')â€Finerenone Using Asymmetric Transfer Hydrogenation. Angewandte Chemie, 2020, 132, 23307-23311.	2.0	1
351	Stuart Warren (24 Dec 1938–22 Mar 2020). Organic and Biomolecular Chemistry, 2020, 18, 7236-7237.	2.8	1
352	A Formal Asymmetric Synthesis of (+)-Anatoxin-a Using an Enantioselective Deprotonation Strategy on an Eight-Membered Ring. Angewandte Chemie - International Edition, 1999, 38, 1985-1986.	13.8	1
353	A Novel Catalytic Cycle for the Synthesis of Epoxides Using Sulfur Ylides, and Application to the Synthesis of Cyclopropanes and Aziridines. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 283-292.	1.6	0
354	A New Method for the Preparation of Silyl Enol Ethers from Carbonyl Compounds and (Trimethylsilyl)diazomethane in a Regiospecific and Highly Stereoselective Manner ChemInform, 2003, 34, no-no.	0.0	0
355	Application of the Chiral Acyl Anion Equivalent, trans-1,3-Dithiane 1,3-Dioxide, to an Asymmetric Synthesis of (R)-Salbutamol (I) ChemInform, 2003, 34, no.	0.0	0
356	Palladium Catalyzed Cyclization—Carbonylation of Enynes to Give Cyclic γ,δ-Unsaturated Acids ChemInform, 2003, 34, no.	0.0	0
357	Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to High E Selectivity with Semi-Stabilizing Groups in Wittig Olefinations ChemInform, 2003, 34, no.	0.0	0
358	Tandem Formation and [2,3] Rearrangement of Methylene Ammonium Ylides Derived from Amines and the Simmons—Smith Reagent ChemInform, 2003, 34, no.	0.0	0
359	Highly Enantioselective Oxidations of Ketene Dithioacetals Leading to trans Bis-sulfoxides ChemInform, 2003, 34, no.	0.0	0
360	New Insights in the Mechanism of Amine Catalyzed Epoxidation: Dual Role of Protonated Ammonium Salts as Both Phase Transfer Catalysts and Activators of Oxone ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
361	A Novel One-Pot Method for the Preparation of Pyrazoles by 1,3-Dipolar Cycloadditions of Diazo Compounds Generated in situ ChemInform, 2003, 34, no.	0.0	0
362	Sulfur-Ylide-Mediated Synthesis of Functionalized and Trisubstituted Epoxides with High Enantioselectivity; Application to the Synthesis of CDP-840 ChemInform, 2003, 34, no.	0.0	0
363	A New Protocol for the in situ Generation of Aromatic, Heteroaromatic, and Unsaturated Diazo Compounds and Its Application in Catalytic and Asymmetric Epoxidation of Carbonyl Compounds. Extensive Studies to Map Out Scope and Limitations, and Rationalization of Diastereo- and Enantioselectivities ChemInform. 2004. 35. no.	0.0	0
364	The Complexity of Catalysis: Origins of Enantio- and Diastereocontrol in Sulfur Ylide Mediated Epoxidation Reactions. ChemInform, 2004, 35, no.	0.0	0
365	Highly Diastereoselective Simmons—Smith Cyclopropanation of Allylic Amines ChemInform, 2004, 35, no.	0.0	0
366	Catalytic Asymmetric Nazarov Reactions Promoted by Chiral Lewis Acid Complexes ChemInform, 2004, 35, no.	0.0	0
367	Synthesis and Applications of Chiral Organoboranes Generated from Sulfonium Ylides ChemInform, 2005, 36, no.	0.0	0
368	The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis. ChemInform, 2005, 36, no.	0.0	0
369	Highly Regioselective and Diastereoselective Epoxidation of Allylic Amines with Oxone ChemInform, 2005, 36, no.	0.0	0
370	Enantioselective α-Arylation of Cyclohexanones with Diaryl Iodonium Salts: Application to the Synthesis of (-)-Epibatidine ChemInform, 2005, 36, no.	0.0	0
371	Synthesis of Epoxides from Aldehydes and Tosylhydrazone Salts Catalyzed by Triphenylarsine: Complete trans Selectivity for all Combinations of Coupling Partners ChemInform, 2002, 33, 120-120.	0.0	0
372	Titelbild: Enantioselective Construction of Quaternary Stereogenic Centers from Tertiary Boronic Esters: Methodology and Applications (Angew. Chem. 16/2011). Angewandte Chemie, 2011, 123, 3655-3655.	2.0	0
373	Rücktitelbild: Visibleâ€Lightâ€Driven Strainâ€Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters (Angew. Chem. 16/2020). Angewandte Chemie, 2020, 132, 6694-6694.	2.0	0
374	The Bristol Synthesis Meeting - Fostering Creativity and Inspiration since 2001. European Journal of Organic Chemistry, 2020, 2020, 2308-2309.	2.4	0
375	Assembly Line Synthesis. , 0, , .		0