
Philip Coffino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7345558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allostery Modulates Interactions between Proteasome Core Particles and Regulatory Particles. Biomolecules, 2022, 12, 764.	4.0	3
2	Identification of Novel Therapeutic Targets for Fibrolamellar Carcinoma Using Patient-Derived Xenografts and Direct-from-Patient Screening. Cancer Discovery, 2021, 11, 2544-2563.	9.4	27
3	Allosteric coupling between $\hat{l}\pm$ -rings of the 20S proteasome. Nature Communications, 2020, 11, 4580.	12.8	16
4	Slippery Substrates Impair ATP-dependent Protease Function by Slowing Unfolding. Journal of Biological Chemistry, 2014, 289, 3826.	3.4	2
5	Ubiquitin-independent proteasomal degradation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 216-221.	4.1	190
6	Slippery Substrates Impair Function of a Bacterial Protease ATPase by Unbalancing Translocation versus Exit. Journal of Biological Chemistry, 2013, 288, 13243-13257.	3.4	26
7	Functional Asymmetries of Proteasome Translocase Pore. Journal of Biological Chemistry, 2012, 287, 18535-18543.	3.4	49
8	Ubiquitin Proteasome System in Stress and Disease. Biochemistry Research International, 2012, 2012, 1-2.	3.3	1
9	Dependence of Proteasome Processing Rate on Substrate Unfolding. Journal of Biological Chemistry, 2011, 286, 17495-17502.	3.4	41
10	Ordering an Engagement Ring. Molecular Cell, 2010, 38, 319-320.	9.7	0
11	A genetic screen for <i>Saccharomyces cerevisiae</i> mutants affecting proteasome function, using a ubiquitinâ€independent substrate. Yeast, 2008, 25, 199-217.	1.7	18
12	Structural elements of the ubiquitin-independent proteasome degron of ornithine decarboxylase. Biochemical Journal, 2008, 410, 401-407.	3.7	53
13	The Cytoplasmic Hsp70 Chaperone Machinery Subjects Misfolded and Endoplasmic Reticulum Import-incompetent Proteins to Degradation via the Ubiquitin–Proteasome System. Molecular Biology of the Cell, 2007, 18, 153-165.	2.1	148
14	Proteasome substrate degradation requires association plus extended peptide. EMBO Journal, 2007, 26, 123-131.	7.8	113
15	Glycine–alanine repeats impair proper substrate unfolding by the proteasome. EMBO Journal, 2006, 25, 1720-1729.	7.8	73
16	Probing the Ubiquitin/Proteasome System with Ornithine Decarboxylase, a Ubiquitinâ€Independent Substrate. Methods in Enzymology, 2005, 398, 399-413.	1.0	29
17	Proteasomes Begin Ornithine Decarboxylase Digestion at the C Terminus. Journal of Biological Chemistry, 2004, 279, 20959-20965.	3.4	49
18	Repeat Sequence of Epstein-Barr Virus-encoded Nuclear Antigen 1 Protein Interrupts Proteasome Substrate Processing. Journal of Biological Chemistry, 2004, 279, 8635-8641.	3.4	64

PHILIP COFFINO

#	Article	IF	CITATIONS
19	Ubistatins Inhibit Proteasome-Dependent Degradation by Binding the Ubiquitin Chain. Science, 2004, 306, 117-120.	12.6	183
20	Development of a method for screening short-lived proteins using green fluorescent protein. Genome Biology, 2004, 5, R81.	9.6	16
21	Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO Journal, 2003, 22, 1488-1496.	7.8	189
22	Transcriptional regulation of the ornithine decarboxylase gene by c-Myc/Max/Mad network and retinoblastoma protein interacting with c-Myc. International Journal of Biochemistry and Cell Biology, 2003, 35, 496-521.	2.8	32
23	Ubiquitin-independent Mechanisms of Mouse Ornithine Decarboxylase Degradation Are Conserved between Mammalian and Fungal Cells. Journal of Biological Chemistry, 2003, 278, 12135-12143.	3.4	76
24	Structural Elements of Antizymes 1 and 2 Are Required for Proteasomal Degradation of Ornithine Decarboxylase. Journal of Biological Chemistry, 2002, 277, 45957-45961.	3.4	44
25	An Easily Dissociated 26 S Proteasome Catalyzes an Essential Ubiquitin-mediated Protein Degradation Pathway in Trypanosoma brucei. Journal of Biological Chemistry, 2002, 277, 15486-15498.	3.4	59
26	Antizyme, a mediator of ubiquitin-independent proteasomal degradation. Biochimie, 2001, 83, 319-323.	2.6	69
27	Regulation of cellular polyamines by antizyme. Nature Reviews Molecular Cell Biology, 2001, 2, 188-194.	37.0	325
28	Regulated Degradation of Yeast Ornithine Decarboxylase. Journal of Biological Chemistry, 1999, 274, 25921-25926.	3.4	33
29	Antizyme2 Is a Negative Regulator of Ornithine Decarboxylase and Polyamine Transport. Journal of Biological Chemistry, 1999, 274, 26425-26430.	3.4	71
30	Structure of mammalian ornithine decarboxylase at 1.6 Ã resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure, 1999, 7, 567-581.	3.3	145
31	α5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochemical Journal, 1999, 344, 349-358.	3.7	36
32	α5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochemical Journal, 1999, 344, 349.	3.7	26
33	Developmental effect of polyamine depletion in Caenorhabditis elegans. Biochemical Journal, 1998, 333, 309-315.	3.7	30
34	The N Terminus of Antizyme Promotes Degradation of Heterologous Proteins. Journal of Biological Chemistry, 1996, 271, 4441-4446.	3.4	32
35	Identification of a Region of p53 That Confers Lability. Journal of Biological Chemistry, 1996, 271, 4447-4451.	3.4	27

Crystallization of a mammalian ornithine decarboxylase. , 1996, 24, 266-268.

5

PHILIP COFFINO

#	Article	IF	CITATIONS
37	Degradation of Ornithine Decarboxylase by the Mammalian and Yeast 26S Proteasome Complexes Requires all the Components of the Protease. FEBS Journal, 1995, 229, 276-283.	0.2	38
38	Rat Antizyme Inhibits the Activity but Does Not Promote the Degradation of Mouse Ornithine Decarboxylase in Trypanosoma brucei. Journal of Biological Chemistry, 1995, 270, 10264-10271.	3.4	19
39	Expression and post-transcriptional regulation of ornithine decarboxylase during early Xenopus development. FEBS Journal, 1991, 202, 575-581.	0.2	43
40	Killer polyamines?. Journal of Cellular Biochemistry, 1991, 45, 54-58.	2.6	45
41	Ornithine decarboxylase of African trypanosomes. Biochemical Society Transactions, 1990, 18, 739-740.	3.4	2
42	Regulation of mouse ornithine decarboxylase activity by cell growth, serum and tetradecanoyl phorbol acetate is governed primarily by sequences within the coding region of the gene. Nucleic Acids Research, 1989, 17, 9843-9860.	14.5	57
43	Linkage genetics of mouse ornithine decarboxylase (Odc). Genomics, 1989, 5, 636-638.	2.9	15
44	Probable cloning artefacts previously interpreted as unusual leader sequences of rodent ornithine decarboxylase mRNAs — a cautionary tale. Gene, 1988, 69, 365-368.	2.2	15
45	Nucleotide sequence of the mouse ornithine decarboxylase gene. Nucleic Acids Research, 1988, 16, 2731-2732.	14.5	30
46	[2] Cultured S49 mouse T lymphoma cells. Methods in Enzymology, 1987, 151, 9-19.	1.0	19
47	Revertants of a trans-dominant S49 mouse lymphoma mutant that affects expression of cAMP-dependent protein kinase. Cell, 1983, 35, 311-320.	28.9	23
48	Increased histone mRNA levels during inhibition of protein synthesis. Biochemical and Biophysical Research Communications, 1983, 114, 131-137.	2.1	50
49	Quantitative forward-mutation specificity of mono-functional alkylating agents, ICR-191, and aflatoxin B1 in mouse lymphoma cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 95, 297-311.	1.0	13
50	Hormonal regulation of cloned genes. Nature, 1981, 292, 492-493.	27.8	2
51	G1 and S phase mammalian cells synthesize histones at equivalent rates. Cell, 1980, 21, 195-204.	28.9	109
52	Regulation of phosphodiesterase and ornithine decarboxylase by cAMP is cell cycle independent. Journal of Cellular Physiology, 1979, 101, 369-374.	4.1	24
53	Two-dimensional gel analysis of cyclic amp effects in cultured s49 mouse lymphoma cells: Protein modifications, inductions and repressions. Cell, 1979, 18, 719-733.	28.9	100

Regulation of Lymphoma Cell Growth by Cyclic AMP. , 1979, , 43-47.

PHILIP COFFINO

#	Article	IF	CITATIONS
55	Complementation analysis of hormone-sensitive adenylate cyclase. Nature, 1978, 272, 720-722.	27.8	34
56	Studies of cyclic AMP action using mutant tissue culture cells. In Vitro, 1978, 14, 140-145.	1.2	31
57	Kinase-negative mutants of S49 mouse lymphoma cells carry a trans-dominant mutation affecting expression of cAMP-dependent protein kinase. Cell, 1978, 15, 1351-1361.	28.9	102
58	Subunit interaction in cyclic AMP-dependent protein kinase of mutant lymphoma cells Proceedings of the United States of America, 1977, 74, 1167-1171.	7.1	6
59	Cyclic amp-induced cytolysis in S49 cells: selection of an unresponsive "deathless―mutant. Cell, 1977, 11, 149-155.	28.9	48
60	Mutations causing charge alterations in regulatory subunits of the cAMP-dependent protein kinase of cultured S49 lymphoma cells. Cell, 1977, 10, 381-391.	28.9	224
61	Hypoxanthine-guanine phosphoribosyl transferase with altered substrate affinity in mutant mouse lymphoma cells. Biochimica Et Biophysica Acta - Biomembranes, 1977, 483, 70-78.	2.6	4
62	Coexpression of mutant and wild type protein kinase in lymphoma cells resistant to dibutyryl cyclic AMP. Journal of Cellular Physiology, 1977, 92, 437-445.	4.1	23
63	Receptors for Low-Molecular-Weight Hormones on Lymphocytes. , 1977, , 331-356.		2
64	CYCLIC NUCLEOTIDES AND CONTROL OF CELL PROLIFERATION. , 1977, , 536.		0
65	SUMMARY REMARKS OF CHAIRMAN. , 1977, , 49-51.		Ο
66	Hormone-Mediated Lymphoma Cell Death: Mechanisms Of Glucocorticoid And Cyclic Amp Action. Journal of Investigative Dermatology, 1976, 67, 648-649.	0.7	1
67	Molecular Mechanisms of Cyclic AMP Action: A Genetic Approach. , 1976, 32, 669-682.		25
68	A structural gene mutation affecting the regulatory subunit of cyclic AMP-dependent protein kinase in mouse lymphoma cells Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 5051-5055.	7.1	58
69	Somatic genetic analysis of cyclic AMP action: Selection of unresponsive mutants. Journal of Cellular Physiology, 1975, 85, 603-609.	4.1	124
70	Somatic genetic analysis of cyclic AMP action: Characterization of unresponsive mutants. Journal of Cellular Physiology, 1975, 85, 611-619.	4.1	96
71	Cyclic AMP-dependent protein kinase: pivotal role in regulation of enzyme induction and growth. Science, 1975, 190, 896-898.	12.6	166
72	Cloning of mouse myeloma cells and detection of rare variants. Journal of Cellular Physiology, 1972, 79, 429-440.	4.1	246