Maria Jose Peral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7345188/publications.pdf

Version: 2024-02-01

38	1,078	14	32
papers	citations	h-index	g-index
39	39	39	1341
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Acute Colon Inflammation Triggers Primary Motor Cortex Glial Activation, Neuroinflammation, Neuronal Hyperexcitability, and Motor Coordination Deficits. International Journal of Molecular Sciences, 2022, 23, 5347.	4.1	2
2	Proper Eâ€cadherin membrane location in colon requires Dab2 and it modifies by inflammation and cancer. Journal of Cellular Physiology, 2021, 236, 1083-1093.	4.1	2
3	USE OF AN APPLICATION FOR MOBILE PHONES TO EVALUATE STUDENTS´ SKILL IN PHYSIOLOGY LABORATORIES. , 2021, , .		O
4	Galectin-3 Deletion Reduces LPS and Acute Colitis-Induced Pro-Inflammatory Microglial Activation in the Ventral Mesencephalon. Frontiers in Pharmacology, 2021, 12, 706439.	3.5	6
5	PERFORMING A TEACHING INNOVATION ACTIVITY IN TIMES OF PANDEMIC. , 2020, , .		O
6	Small and large intestine express a truncated Dab1 isoform that assembles in cell-cell junctions and co-localizes with proteins involved in endocytosis. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1231-1241.	2.6	2
7	Reelin protects from colon pathology by maintaining the intestinal barrier integrity and repressing tumorigenic genes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2126-2134.	3.8	15
8	Reelin expression is up-regulated in mice colon in response to acute colitis and provides resistance against colitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 462-473.	3.8	15
9	Reelinâ€Dab1 signaling system in human colorectal cancer. Molecular Carcinogenesis, 2017, 56, 712-721.	2.7	15
10	The Synaptojanins in the murine small and large intestine. Journal of Bioenergetics and Biomembranes, 2016, 48, 569-579.	2.3	2
11	Dab1 and reelin participate in a common signal pathway that controls intestinal crypt/villus unit dynamics. Biology of the Cell, 2014, 106, 83-96.	2.0	9
12	Dab2, Megalin, Cubilin and Amnionless Receptor Complex Might Mediate Intestinal Endocytosis in the Suckling Rat. Journal of Cellular Biochemistry, 2014, 115, 510-522.	2.6	13
13	Reelin Is Involved in the Crypt-Villus Unit Homeostasis. Tissue Engineering - Part A, 2013, 19, 188-198.	3.1	21
14	Lack of reelin modifies the gene expression in the small intestine of mice. Journal of Physiology and Biochemistry, 2012, 68, 205-218.	3.0	10
15	Regulation of Dab2 expression in intestinal and renal epithelia by development. Journal of Cellular Biochemistry, 2011, 112, 354-361.	2.6	7
16	Rat small intestine expresses the reelin–Disabledâ€1 signalling pathway. Experimental Physiology, 2010, 95, 498-507.	2.0	27
17	Na+/Clâ^/creatine transporter activity and expression in rat brain synaptosomes. Neuroscience, 2010, 165, 53-60.	2.3	31
18	Ontogeny of Na+/l-carnitine transporter and of \hat{l}^3 -trimethylaminobutyraldehyde dehydrogenase and \hat{l}^3 -butyrobetaine hydroxylase genes expression in rat kidney. Mechanisms of Ageing and Development, 2009, 130, 227-233.	4.6	7

#	Article	IF	Citations
19	Ontogeny up-regulates renal Na+/Clâ^'/creatine transporter in rat. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2841-2848.	2.6	15
20	Developmental decrease in rat small intestinal creatine uptake. Mechanisms of Ageing and Development, 2005, 126, 523-530.	4.6	18
21	OCTN3: A Na+-independentL-carnitine transporter in enterocytes basolateral membrane. Journal of Cellular Physiology, 2005, 202, 929-935.	4.1	38
22	Developmental Maturation and Segmental Distribution of Rat Small Intestinal L-Carnitine Uptake. Journal of Membrane Biology, 2005, 206, 9-16.	2.1	15
23	D-mannose transport and metabolism in isolated enterocytes. Glycobiology, 2004, 14, 495-500.	2.5	19
24	Prolonged Ethanol Ingestion Increases Renal AQP2 and AQP3 Expression in Adult Ratsand in Their Offspring. Journal of Membrane Biology, 2004, 198, 89-94.	2.1	12
25	Functional Characterization of Intestinal L-Carnitine Transport. Journal of Membrane Biology, 2002, 185, 65-74.	2.1	36
26	Human, rat and chicken small intestinal Na+â€Clâ^'â€creatine transporter: functional, molecular characterization and localization. Journal of Physiology, 2002, 545, 133-144.	2.9	81
27	Na+-dependent d-mannose transport at the apical membrane of rat small intestine and kidney cortex. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1512, 225-230.	2.6	13
28	Hormonal regulation of chicken intestinal NHE and SGLT-1 activities. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R655-R660.	1.8	13
29	A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells. Pflugers Archiv European Journal of Physiology, 2001, 441, 686-691.	2.8	10
30	Creatine Transport in Brush-Border Membrane Vesicles Isolated from Rat Kidney Cortex. Journal of the American Society of Nephrology: JASN, 2001, 12, 1819-1825.	6.1	31
31	CoREST: A functional corepressor required for regulation of neural-specific gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9873-9878.	7.1	425
32	A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1177-1182.	7.1	124
33	Intracellular pH regulation in chicken enterocytes: the importance of extracellular pH. Experimental Physiology, 1995, 80, 1001-1007.	2.0	2
34	Proton conductance and intracellular pH recovery from an acid load in chicken enterocytes Journal of Physiology, 1995, 484, 165-172.	2.9	9
35	K+-H+ Exchange Activity in Brush-Border Membrane Vesicles Isolated from Chick Small Intestine. FEBS Journal, 1995, 231, 682-686.	0.2	13
36	Na+-HCO3? cotransporter and intracellular pH regulation in chicken enterocytes. Pflugers Archiv European Journal of Physiology, 1995, 430, 612-616.	2.8	10

#	Article	IF	CITATIONS
37	Cytosolic pH regulation in chicken enterocytes: Na+-independent regulatory cell alkalinization. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1233, 84-88.	2.6	3
38	Intracellular pH regulation in cecal epithelial cells from the chick. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1153, 213-218.	2.6	2