Mónica L Chávez González

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734518/publications.pdf

Version: 2024-02-01

30	706	15	25
papers	citations	h-index	g-index
30	30	30	651 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Effect of encapsulation and natural polyphenolic compounds on bacteriophage stability and activity on <i>Escherichia coli</i> in <i>Lactuca sativa</i> L. var. <i>longifolia</i> Journal of Food Safety, 2023, 43, .	1.1	4
2	Sorghum (<i>Sorghum bicolor</i> L.) as a potential source of bioactive substances and their biological properties. Critical Reviews in Food Science and Nutrition, 2022, 62, 2269-2280.	5.4	42
3	Comparative extraction study of grape pomace bioactive compounds by submerged and solidâ€state fermentation. Journal of Chemical Technology and Biotechnology, 2022, 97, 1494-1505.	1.6	12
4	Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi Journal of Biological Sciences, 2022, 29, 1957-1980.	1.8	20
5	Kinetic Study of Fungal Growth of Several Tanninolytic Strains Using Coffee Pulp Procyanidins. Fermentation, 2022, 8, 17.	1.4	3
6	Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules, 2022, 27, 3887.	1.7	9
7	Recent advances on the microbiological and enzymatic processing for conversion of food wastes to valuable bioproducts. Current Opinion in Food Science, 2021, 38, 40-45.	4.1	24
8	Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. Journal of Functional Foods, 2021, 77, 104326.	1.6	46
9	Application of Lactic Acid Bacteria in Fermentation Processes to Obtain Tannases Using Agro-Industrial Wastes. Fermentation, 2021, 7, 48.	1.4	10
10	Molecular Characterization of Fungal Pigments. Journal of Fungi (Basel, Switzerland), 2021, 7, 326.	1.5	6
11	Encapsulated Food Products as a Strategy to Strengthen Immunity Against COVID-19. Frontiers in Nutrition, 2021, 8, 673174.	1.6	13
12	Antioxidant, antimicrobial and cytotoxic activities of secondary metabolites from Streptomyces sp. isolated of the Amazon-Brazil region. Research, Society and Development, 2021, 10, e366101018974.	0.0	0
13	Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Frontiers in Nutrition, 2021, 8, 747956.	1.6	26
14	Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry Molecular Sciences, 2021, 3, 100047.	0.9	54
15	Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Research International, 2021, 150, 110746.	2.9	32
16	Mexican Oregano (Kunth) as Source of Bioactive Compounds: A Review. Molecules, 2021, 26, .	1.7	0
17	Mexican Oregano (Lippia graveolens Kunth) as Source of Bioactive Compounds: A Review. Molecules, 2021, 26, 5156.	1.7	23
18	Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods, 2021, 10, 3152.	1.9	26

#	Article	IF	CITATIONS
19	Use of coffee pulp and sorghum mixtures in the production of n-demethylases by solid-state fermentation. Bioresource Technology, 2020, 305, 123112.	4.8	15
20	Conventional and Emerging Extraction Processes of Flavonoids. Processes, 2020, 8, 434.	1.3	96
21	Mineral and fatty acid contents of maize kernels with different levels of polyembryony. Cereal Chemistry, 2020, 97, 723-732.	1.1	5
22	<i>Escherichia coli</i> DH5 \hat{l} ± functionalised magnetite nanoparticles applied for the magnetic extraction of bacteriophages. Micro and Nano Letters, 2020, 15, 1134-1139.	0.6	2
23	Ellagic Acid Recovery by Solid State Fermentation of Pomegranate Wastes by Aspergillus niger and Saccharomyces cerevisiae: A Comparison. Molecules, 2019, 24, 3689.	1.7	29
24	Emerging strategies for the development of food industries. Bioengineered, 2019, 10, 522-537.	1.4	20
25	Exploring the Degradation of Gallotannins Catalyzed by Tannase Produced by Aspergillus niger GH1 for Ellagic Acid Production in Submerged and Solid-State Fermentation. Applied Biochemistry and Biotechnology, 2018, 185, 476-483.	1.4	9
26	Dihydroquercetin: known antioxidantâ€"new inhibitor of alpha-amylase activity. Medicinal Chemistry Research, 2018, 27, 966-971.	1.1	3
27	Enzyme-assisted extraction of citrus essential oil. Chemical Papers, 2016, 70, .	1.0	37
28	Production profiles of phenolics from fungal tannic acid biodegradation in submerged and solid-state fermentation. Process Biochemistry, 2014, 49, 541-546.	1.8	30
29	Microbial and enzymatic hydrolysis of tannic acid: influence of substrate chemical quality. Chemical Papers, 2012, 66, .	1.0	8
30	Biotechnological Advances and Challenges of Tannase: An Overview. Food and Bioprocess Technology, 2012, 5, 445-459.	2.6	102