Jordi Vila-Guerau de Arellano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7344806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nature Geoscience, 2014, 7, 345-349.	12.9	694
2	The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations. Annales Geophysicae, 1998, 16, 90-109.	1.6	673
3	Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geoscientific Model Development, 2010, 3, 415-444.	3.6	213
4	Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nature Geoscience, 2019, 12, 712-717.	12.9	168
5	The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmospheric Chemistry and Physics, 2014, 14, 10931-10960.	4.9	151
6	The impact of weather and atmospheric circulation on O ₃ and PM ₁₀ levels at a rural mid-latitude site. Atmospheric Chemistry and Physics, 2009, 9, 2695-2714.	4.9	137
7	Interactions between dryâ€air entrainment, surface evaporation and convective boundaryâ€layer development. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1277-1291.	2.7	132
8	Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2012, 12, 8257-8270.	4.9	111
9	The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 2011, 11, 10599-10618.	4.9	108
10	The Contribution of Shear to the Evolution of a Convective Boundary Layer. Journals of the Atmospheric Sciences, 2003, 60, 1913-1926.	1.7	104
11	Observational evidence for cloud cover enhancement over western European forests. Nature Communications, 2017, 8, 14065.	12.8	104
12	Evaluation of Limited-Area Models for the Representation of the Diurnal Cycle and Contrasting Nights in CASES-99. Journal of Applied Meteorology and Climatology, 2008, 47, 869-887.	1.5	102
13	Surface Wind Regionalization over Complex Terrain: Evaluation and Analysis of a High-Resolution WRF Simulation. Journal of Applied Meteorology and Climatology, 2010, 49, 268-287.	1.5	96
14	Relative Humidity as an Indicator for Cloud Formation over Heterogeneous Land Surfaces. Journals of the Atmospheric Sciences, 2008, 65, 3263-3277.	1.7	92
15	Understanding the Daily Cycle of Evapotranspiration: A Method to Quantify the Influence of Forcings and Feedbacks. Journal of Hydrometeorology, 2010, 11, 1405-1422.	1.9	89
16	Entrainment process of carbon dioxide in the atmospheric boundary layer. Journal of Geophysical Research, 2004, 109, .	3.3	85
17	Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nature Geoscience, 2012, 5, 701-704.	12.9	81
18	Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign. Atmospheric Chemistry and Physics, 2008, 8, 6223-6243.	4.9	76

#	Article	IF	CITATIONS
19	The Stove, Dome, and Umbrella Effects of Atmospheric Aerosol on the Development of the Planetary Boundary Layer in Hazy Regions. Geophysical Research Letters, 2020, 47, e2020GL087373.	4.0	73
20	Influence of chemistry on the flux-gradient relationships for the NO-O3-NO2 system. Boundary-Layer Meteorology, 1992, 61, 375-387.	2.3	69
21	On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces. Atmospheric Chemistry and Physics, 2011, 11, 10681-10704.	4.9	67
22	Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorology and Atmospheric Physics, 2003, 84, 157-170.	2.0	64
23	Flux estimates of isoprene, methanol and acetone from airborne PTR-MS measurements over the tropical rainforest during the GABRIEL 2005 campaign. Atmospheric Chemistry and Physics, 2009, 9, 4207-4227.	4.9	64
24	Role of Shear and the Inversion Strength During Sunset Turbulence Over Land: Characteristic Length Scales. Boundary-Layer Meteorology, 2006, 121, 537-556.	2.3	63
25	Tethered-balloon measurements of actinic flux in a cloud-capped marine boundary layer. Journal of Geophysical Research, 1994, 99, 3699.	3.3	62
26	Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2013, 148, 31-49.	2.3	58
27	Transport and chemical transformations influenced by shallow cumulus over land. Atmospheric Chemistry and Physics, 2005, 5, 3219-3231.	4.9	54
28	Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer. Journal of Geophysical Research, 2008, 113, .	3.3	53
29	The role of boundary layer dynamics on the diurnal evolution of isoprene and the hydroxyl radical over tropical forests. Journal of Geophysical Research, 2011, 116, .	3.3	53
30	Introducing effective reaction rates to account for the inefficient mixing of the convective boundary layer. Atmospheric Environment, 2005, 39, 445-461.	4.1	49
31	Control of Chemical Reactions by Convective Turbulence in the Boundary Layer. Journals of the Atmospheric Sciences, 1998, 55, 568-579.	1.7	48
32	On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements. Atmospheric Chemistry and Physics, 2009, 9, 3629-3640.	4.9	48
33	Turbulence vertical structure of the boundary layer during the afternoon transition. Atmospheric Chemistry and Physics, 2015, 15, 10071-10086.	4.9	47
34	Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmospheric Chemistry and Physics, 2014, 14, 4515-4530.	4.9	46
35	Direct and Diffuse Radiation in the Shallow Cumulus–Vegetation System: Enhanced and Decreased Evapotranspiration Regimes. Journal of Hydrometeorology, 2017, 18, 1731-1748.	1.9	46
36	Atmospheric surface layer similarity theory applied to chemically reactive species. Journal of Geophysical Research, 1995, 100, 1397-1408.	3.3	45

#	Article	IF	CITATIONS
37	Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010. Atmospheric Chemistry and Physics, 2012, 12, 9335-9353.	4.9	45
38	An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7651-7669.	3.3	45
39	Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled landâ€atmosphere system. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5845-5863.	3.3	45
40	Tomography of the lower troposphere using a small dense network of GPS receivers. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 439-447.	6.3	44
41	Representing Sheared Convective Boundary Layer by Zeroth- and First-Order-Jump Mixed-Layer Models: Large-Eddy Simulation Verification. Journal of Applied Meteorology and Climatology, 2006, 45, 1224-1243.	1.5	43
42	Land–atmosphere interactions in the tropics – a review. Hydrology and Earth System Sciences, 2019, 23, 4171-4197.	4.9	43
43	Dispersion of a Passive Tracer in Buoyancy- and Shear-Driven Boundary Layers. Journal of Applied Meteorology and Climatology, 2003, 42, 1116-1130.	1.7	41
44	Shallow cumulus rooted in photosynthesis. Geophysical Research Letters, 2014, 41, 1796-1802.	4.0	40
45	Relating Eulerian and Lagrangian Statistics for the Turbulent Dispersion in the Atmospheric Convective Boundary Layer. Journals of the Atmospheric Sciences, 2005, 62, 1175-1191.	1.7	38
46	Fluxes and (co-)variances of reacting scalars in the convective boundary layer. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 935-949.	1.6	37
47	The dispersion of chemically reactive species in the atmospheric boundary layer. Meteorology and Atmospheric Physics, 2004, 87, 23.	2.0	36
48	Case study of the diurnal variability of chemically active species with respect to boundary layer dynamics during DOMINO. Atmospheric Chemistry and Physics, 2012, 12, 5329-5341.	4.9	35
49	Subcloud-Layer Feedbacks Driven by the Mass Flux of Shallow Cumulus Convection over Land. Journals of the Atmospheric Sciences, 2014, 71, 881-895.	1.7	35
50	Landâ€atmosphere coupling explains the link between pan evaporation and actual evapotranspiration trends in a changing climate. Geophysical Research Letters, 2010, 37, .	4.0	33
51	Parameterization of Entrainment in a Sheared Convective Boundary Layer Using a First-order Jump Model. Boundary-Layer Meteorology, 2006, 120, 455-475.	2.3	32
52	Fifty Years of Atmospheric Boundary-Layer Research at Cabauw Serving Weather, Air Quality and Climate. Boundary-Layer Meteorology, 2020, 177, 583-612.	2.3	31
53	Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions. Agricultural and Forest Meteorology, 2021, 307, 108509.	4.8	31
54	How do aerosols above the residual layer affect the planetary boundary layer height?. Science of the Total Environment, 2022, 814, 151953.	8.0	30

#	Article	IF	CITATIONS
55	Soil drought can mitigate deadly heat stress thanks to a reduction of air humidity. Science Advances, 2022, 8, eabe6653.	10.3	30
56	The divergence of the turbulent diffusion flux in the surface layer due to chemical reactions: the NO-O3-NO2 system. Tellus, Series B: Chemical and Physical Meteorology, 1993, 45, 23-33.	1.6	29
57	Effects of shear in the convective boundary layer: analysis of the turbulent kinetic energy budget. Acta Geophysica, 2008, 56, 167-193.	2.0	29
58	A chemically reactive plume model for the NOî—,NO2î—,O3 system. Atmospheric Environment Part A General Topics, 1990, 24, 2237-2246.	1.3	28
59	The effect of micro-scale turbulence on the reaction rate in a chemically reactive plume. Atmospheric Environment, 1995, 29, 87-95.	4.1	28
60	Analysis of the role of the planetary boundary layer schemes during a severe convective storm. Annales Geophysicae, 2004, 22, 1861-1874.	1.6	28
61	Ozone exchange within and above an irrigated Californian orchard. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1723346.	1.6	28
62	Stable Nocturnal Boundary Layers: A Comparison of One-Dimensional and Large-Eddy Simulation Models. Boundary-Layer Meteorology, 1998, 88, 181-210.	2.3	27
63	Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution. Atmospheric Chemistry and Physics, 2012, 12, 6827-6843.	4.9	27
64	Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings. Atmospheric Chemistry and Physics, 2015, 15, 4241-4257.	4.9	27
65	BRIDGING THE GAP BETWEEN ATMOSPHERIC PHYSICS AND CHEMISTRY IN STUDIES OF SMALL-SCALE TURBULENCE. Bulletin of the American Meteorological Society, 2003, 84, 51-56.	3.3	26
66	Understanding isoprene photooxidation using observations and modeling over a subtropical forest in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 7725-7741.	4.9	26
67	Plant water-stress parameterization determines the strength of land–atmosphere coupling. Agricultural and Forest Meteorology, 2016, 217, 61-73.	4.8	26
68	Scaling the turbulent transport of chemical compounds in the surface layer under neutral and stratified conditions. Quarterly Journal of the Royal Meteorological Society, 1997, 123, 223-242.	2.7	25
69	A conceptual framework to quantify the influence of convective boundary layer development on carbon dioxide mixing ratios. Atmospheric Chemistry and Physics, 2012, 12, 2969-2985.	4.9	25
70	Large-Eddy Simulation Comparison of Neutral Flow Over a Canopy: Sensitivities to Physical and Numerical Conditions, and Similarity to Other Representations. Boundary-Layer Meteorology, 2017, 162, 71-89.	2.3	25
71	Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates. Tellus, Series B: Chemical and Physical Meteorology, 1995, 47, 353-364.	1.6	24
72	The combined effect of elevation and meteorology on potato crop dynamics: a 10-year study in the Gamo Highlands, Ethiopia. Agricultural and Forest Meteorology, 2018, 262, 166-177.	4.8	24

#	Article	IF	CITATIONS
73	An inter-comparison study to estimate zenith wet delays using VLBI, GPS, and NWP models. Earth, Planets and Space, 2000, 52, 691-694.	2.5	23
74	Turbulent dispersion in cloud-topped boundary layers. Atmospheric Chemistry and Physics, 2009, 9, 1289-1302.	4.9	23
75	Second-order closure study of the covariance between chemically reactive species in the surface layer. Journal of Atmospheric Chemistry, 1993, 16, 145-155.	3.2	22
76	The divergence of the turbulent diffusion flux in the surface layer due to chemical reactions: the NO-O ₃ -NO ₂ system. Tellus, Series B: Chemical and Physical Meteorology, 2022, 45, 23.	1.6	22
77	Cloud Shading Effects on Characteristic Boundary-Layer Length Scales. Boundary-Layer Meteorology, 2015, 157, 237-263.	2.3	22
78	Evolution of Nitrogen Oxide Chemistry in the Nocturnal Boundary Layer. Journal of Applied Meteorology and Climatology, 1997, 36, 943-957.	1.7	21
79	Statistics of Absolute and Relative Dispersion in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study. Journals of the Atmospheric Sciences, 2006, 63, 1253-1272.	1.7	21
80	Effects of soil moisture gradients on the path and the intensity of a West African squall line. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 2162-2175.	2.7	21
81	Mean and Flux Horizontal Variability of Virtual Potential Temperature, Moisture, and Carbon Dioxide: Aircraft Observations and LES Study. Monthly Weather Review, 2008, 136, 4435-4451.	1.4	20
82	Role of synoptic- and meso-scales on the evolution of the boundary-layer wind profile over a coastal region: the near-coast diurnal acceleration. Meteorology and Atmospheric Physics, 2016, 128, 39-56.	2.0	20
83	Characterizing the influence of the marine stratocumulus cloud on the land fog at the Atacama Desert. Atmospheric Research, 2018, 214, 109-120.	4.1	20
84	The Chemistry of a Dry Cloud: The Effects of Radiation and Turbulence. Journals of the Atmospheric Sciences, 2000, 57, 1573-1584.	1.7	19
85	Impacts of afternoon and evening seaâ€breeze fronts on local turbulence, and on CO ₂ and radonâ€222 transport. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 990-1011.	2.7	19
86	Interactions between vegetation, atmospheric turbulence and clouds under a wide range of background wind conditions. Agricultural and Forest Meteorology, 2018, 255, 31-43.	4.8	18
87	Substantial Reductions in Cloud Cover and Moisture Transport by Dynamic Plant Responses. Geophysical Research Letters, 2019, 46, 1870-1878.	4.0	18
88	An observational study on the effects of time and space averaging in photochemical models. Atmospheric Environment Part A General Topics, 1993, 27, 353-362.	1.3	17
89	Fluxes of chemically reactive species inferred from mean concentration measurements. Atmospheric Environment, 1997, 31, 2371-2374.	4.1	17
90	Reductions in nitrogen oxides over the Netherlands between 2005 and 2018 observed from space and on the ground: Decreasing emissions and increasing O3 indicate changing NOx chemistry. Atmospheric Environment: X, 2021, 9, 100104.	1.4	17

#	Article	IF	CITATIONS
91	The Effect of Heat Waves and Drought on Surface Wind Circulations in the Northeast of the Iberian Peninsula during the Summer of 2003. Journal of Climate, 2011, 24, 5416-5422.	3.2	16
92	The boundary layer growth in an urban area. Science of the Total Environment, 2004, 334-335, 207-213.	8.0	15
93	Analyzing the basic features of different complex terrain flows by means of a Doppler Sodar and a numerical model: Some implications for air pollution problems. Meteorology and Atmospheric Physics, 2004, 85, 141.	2.0	15
94	Characteristic Length Scales of Reactive Species in a Convective Boundary Layer. Journals of the Atmospheric Sciences, 2004, 61, 41-56.	1.7	15
95	Influence of Canopy Seasonal Changes on Turbulence Parameterization within the Roughness Sublayer over an Orchard Canopy. Journal of Applied Meteorology and Climatology, 2016, 55, 1391-1407.	1.5	15
96	Atmospheric boundary layer dynamics from balloon soundings worldwide: CLASS4GL v1.0. Geoscientific Model Development, 2019, 12, 2139-2153.	3.6	15
97	E-DATA: A Comprehensive Field Campaign to Investigate Evaporation Enhanced by Advection in the Hyper-Arid Altiplano. Water (Switzerland), 2020, 12, 745.	2.7	15
98	Soil moisture signature in global weather balloon soundings. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	15
99	Evaluation of Atmospheric Boundary Layer Height From Wind Profiling Radar and Slab Models and Its Responses to Seasonality of Land Cover, Subsidence, and Advection. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033775.	3.3	15
100	Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert. Atmospheric Chemistry and Physics, 2021, 21, 9125-9150.	4.9	15
101	The role of atmospheric boundary layer-surface interactions on the development of coastal fronts. Annales Geophysicae, 2007, 25, 341-360.	1.6	14
102	Influence of boundary layer dynamics and isoprene chemistry on the organic aerosol budget in a tropical forest. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9351-9366.	3.3	14
103	Understanding Land–Atmosphere Interactions across a Range of Spatial and Temporal Scales. Bulletin of the American Meteorological Society, 2014, 95, ES14-ES17.	3.3	14
104	Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2013, 148, 557-583.	2.3	13
105	Quantifying the transport of subcloud layer reactants by shallow cumulus clouds over the Amazon. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,041.	3.3	13
106	Cloud Patterns in the Trades Have Four Interpretable Dimensions. Geophysical Research Letters, 2021, 48, e2020GL091001.	4.0	13
107	CloudRoots: integration of advanced instrumental techniques and process modelling of sub-hourly and sub-kilometre land–atmosphere interactions. Biogeosciences, 2020, 17, 4375-4404.	3.3	13
108	Role of nocturnal turbulence and advection in the formation of shallow cumulus over land. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1615-1627.	2.7	12

#	Article	IF	CITATIONS
109	Meteorology during the DOMINO campaign and its connection with trace gases and aerosols. Atmospheric Chemistry and Physics, 2014, 14, 2325-2342.	4.9	11
110	Cumulative ozone effect on canopy stomatal resistance and the impact on boundary layer dynamics and CO ₂ assimilation at the diurnal scale: A case study for grassland in the Netherlands. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1348-1365.	3.0	11
111	Biogenic emissions and land–atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US. Atmospheric Chemistry and Physics, 2019, 19, 701-729.	4.9	11
112	Sub-diurnal variability of the carbon dioxide and water vapor isotopologues at the field observational scale. Agricultural and Forest Meteorology, 2019, 275, 114-135.	4.8	11
113	Threeâ€Dimensional Radiative Effects By Shallow Cumulus Clouds on Dynamic Heterogeneities Over a Vegetated Surface. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001990.	3.8	11
114	A Photoelectric Detector Suspended under a Balloon for Actinic Flux Measurements. Journal of Atmospheric and Oceanic Technology, 1994, 11, 674-679.	1.3	10
115	Numerical simulation of the interaction between ammonium nitrate aerosol and convective boundary-layer dynamics. Atmospheric Environment, 2015, 105, 202-211.	4.1	10
116	Interactions Between the Amazonian Rainforest andÂCumuli Clouds: A Largeâ€Eddy Simulation, Highâ€Resolution ECMWF, and Observational Intercomparison Study. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001828.	3.8	10
117	Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin. Atmospheric Environment, 2013, 75, 348-364.	4.1	9
118	Integrating canopy and large-scale effects in the convective boundary-layer dynamics during the CHATS experiment. Atmospheric Chemistry and Physics, 2017, 17, 1623-1640.	4.9	9
119	Multi-scale temporal analysis of evaporation on a saline lake in the Atacama Desert. Hydrology and Earth System Sciences, 2022, 26, 3709-3729.	4.9	9
120	A largeâ€eddy simulation of the phase transition of ammonium nitrate in a convective boundary layer. Journal of Geophysical Research D: Atmospheres, 2013, 118, 826-836.	3.3	8
121	Two perspectives on the coupled carbon, water and energy exchange in the planetary boundary layer. Biogeosciences, 2015, 12, 103-123.	3.3	8
122	Impact of Future Warming and Enhanced [CO 2] on the Vegetationâ€Cloud Interaction. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12444-12454.	3.3	8
123	Optimization and Representativeness of Atmospheric Chemical Sampling by Hovering Unmanned Aerial Vehicles Over Tropical Forests. Earth and Space Science, 2021, 8, e2020EA001335.	2.6	8
124	Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3). Geoscientific Model Development, 2021, 14, 3939-3967.	3.6	8
125	River winds and pollutant recirculation near the Manaus city in the central Amazon. Communications Earth & Environment, 2021, 2, .	6.8	8
126	Spatio-temporal tomography of the lower troposphere using GPS signals. Physics and Chemistry of the Earth, 2001, 26, 405-411.	0.6	7

#	Article	IF	CITATIONS
127	The diurnal stratocumulus-to-cumulus transition over land in southern West Africa. Atmospheric Chemistry and Physics, 2020, 20, 2735-2754.	4.9	7
128	Unraveling the diurnal atmospheric ammonia budget of a prototypical convective boundary layer. Atmospheric Environment, 2021, 249, 118153.	4.1	7
129	Grain Yield Observations Constrain Cropland CO ₂ Fluxes Over Europe. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3238-3259.	3.0	6
130	Teaching Atmospheric Modeling at the Graduate Level: 15 Years of Using Mesoscale Models as Educational Tools in an Active Learning Environment. Bulletin of the American Meteorological Society, 2019, 100, 2157-2174.	3.3	6
131	Shallow Cumulus Representation and Its Interaction with Radiation and Surface at the Convection Gray Zone. Monthly Weather Review, 2019, 147, 2467-2483.	1.4	6
132	From weak to intense downslope winds: origin, interaction with boundary-layer turbulence and impact on CO ₂ variability. Atmospheric Chemistry and Physics, 2019, 19, 4615-4635.	4.9	5
133	Analyzing the Synopticâ€, Meso―and Local―Scale Involved in Sea Breeze Formation and Frontal Characteristics. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031302.	3.3	5
134	Quantifying the Feedback Between Rice Architecture, Physiology, and Microclimate Under Current and Future CO 2 Conditions. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005452.	3.0	5
135	The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations. Annales Geophysicae, 1997, 16, 90.	1.6	5
136	Explicit aerosol–cloud interactions in the Dutch Atmospheric Large-Eddy Simulation model DALES4.1-M7. Geoscientific Model Development, 2019, 12, 5177-5196.	3.6	4
137	River Winds and Transport of Forest Volatiles in the Amazonian Riparian Ecoregion. Environmental Science & Technology, 2022, 56, 12667-12677.	10.0	4
138	Boundary Layer Characteristics over Homogeneous and Heterogeneous Surfaces Simulated by MM5 and DALES. Journal of Applied Meteorology and Climatology, 2011, 50, 1372-1386.	1.5	3
139	Quantifying the uncertainties of advection and boundary layer dynamics on the diurnal carbon dioxide budget. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9376-9392.	3.3	3
140	Understanding the impact of plant competition on the coupling between vegetation and the atmosphere. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2212-2228.	3.0	3
141	Observational Characterization of the Synoptic and Mesoscale Circulations in Relation to Crop Dynamics: Belg 2017 in the Gamo Highlands, Ethiopia. Atmosphere, 2018, 9, 398.	2.3	3
142	Optical Microwave Scintillometer Evaporation Measurements over a Saline Lake in a Heterogeneous Setting in the Atacama Desert. Journal of Hydrometeorology, 2022, 23, 909-924.	1.9	2
143	Assessing the representativity of NH ₃ measurements influenced by boundary-layer dynamics and the turbulent dispersion of a nearby emission source. Atmospheric Chemistry and Physics, 2022, 22, 8241-8257.	4.9	2
144	The behaviour of vertical flux profiles of NO, O3, and NO2 explained in terms of the photostationary state relationship. Journal of Atmospheric Chemistry, 1993, 16, 293-297.	3.2	1

#	Article	IF	CITATIONS
145	Assessment report on NRP subtheme "Atmospheric processes & UV-B radiation― Studies in Environmental Science, 1995, 65, 155-233.	0.0	1
146	MEETING SUMMARIES. Bulletin of the American Meteorological Society, 2007, 88, 1245-1260.	3.3	1
147	Modelling Flux-Gradient Relationships for Chemically Reactive Species in the Atmospheric Surface Layer. , 1994, , 295-303.		1
148	Ultraviolet radiation and photochemistry in clouds: observations and modelling. Studies in Environmental Science, 1995, 65, 237-240.	0.0	0
149	Poster 25 Impact of meteorological factors on turbulent dispersion over complex terrain. Developments in Environmental Science, 2007, , 811-813.	0.5	0
150	Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer― Inclusion of Subsidence. Boundary-Layer Meteorology, 2013, 148, 585-591.	2.3	0
151	Impact of Aerosol Radiation Absorption on the Heat Budget and Dynamics of the Atmospheric Boundary Layer. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 113-117.	0.2	0
152	On the Segregation of Chemical Species in a Clear Boundary Layer Over Heterogeneous Surface Conditions. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 541-546.	0.2	0
153	Scaling the turbulent transport of chemical compounds in the surface layer under neutral and stratified conditions. Quarterly Journal of the Royal Meteorological Society, 1997, 123, 223-242.	2.7	0