Elias G Dimitrakopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7344361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting the rocking block: closed-form solutions and similarity laws. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2294-2318.	1.0	133
2	Dynamically equivalent rocking structures. Earthquake Engineering and Structural Dynamics, 2014, 43, 1543-1563.	2.5	108
3	Dimensionless fragility curves for rocking response to nearâ€fault excitations. Earthquake Engineering and Structural Dynamics, 2015, 44, 2015-2033.	2.5	107
4	Overturning of Retrofitted Rocking Structures under Pulse-Type Excitations. Journal of Engineering Mechanics - ASCE, 2012, 138, 963-972.	1.6	78
5	Feasibility of pre-earthquake strengthening of buildings based on cost-benefit and life-cycle cost analysis, with the aid of fragility curves. Natural Hazards, 2008, 45, 33-54.	1.6	76
6	Seismic Response Analysis of the Planar Rocking Frame. Journal of Engineering Mechanics - ASCE, 2015, 141, .	1.6	67
7	A three-dimensional dynamic analysis scheme for the interaction between trains and curved railway bridges. Computers and Structures, 2015, 149, 43-60.	2.4	64
8	Seismic response analysis of skew bridges with pounding deck–abutment joints. Engineering Structures, 2011, 33, 813-826.	2.6	61
9	Seismic response analysis of an interacting curved bridge–train system under frequent earthquakes. Earthquake Engineering and Structural Dynamics, 2016, 45, 1129-1148.	2.5	59
10	Vehicle–bridge interaction analysis modeling derailment during earthquakes. Nonlinear Dynamics, 2018, 93, 2315-2337.	2.7	59
11	Dimensional analysis of yielding and pounding structures for records without distinct pulses. Soil Dynamics and Earthquake Engineering, 2009, 29, 1170-1180.	1.9	53
12	Rocking amplification and strongâ€motion duration. Earthquake Engineering and Structural Dynamics, 2018, 47, 2094-2116.	2.5	49
13	Design and experimental verification of easily constructible bamboo footbridges for rural areas. Engineering Structures, 2017, 143, 540-548.	2.6	47
14	Dimensional analysis of the earthquakeâ€induced pounding between adjacent structures. Earthquake Engineering and Structural Dynamics, 2009, 38, 867-886.	2.5	45
15	Nonsmooth dynamic analysis of sticking impacts in rocking structures. Bulletin of Earthquake Engineering, 2017, 15, 2273-2304.	2.3	41
16	Seismic Performance of Rocking Frames with Flag-Shaped Hysteretic Behavior. Journal of Engineering Mechanics - ASCE, 2017, 143, .	1.6	41
17	Dynamic response of high speed vehicles and sustaining curved bridges under conditions of resonance. Engineering Structures, 2016, 114, 61-74.	2.6	40
18	Analysis of a frictional oblique impact observed inÂskewÂbridges. Nonlinear Dynamics, 2010, 60, 575-595.	2.7	38

#	Article	IF	CITATIONS
19	Additional damping effect on bridges because of vehicle-bridge interaction. Journal of Sound and Vibration, 2020, 476, 115294.	2.1	30
20	Dynamic vehicle–bridge interaction under simultaneous vertical earthquake excitation. Bulletin of Earthquake Engineering, 2017, 15, 71-95.	2.3	28
21	Nonsmooth analysis of the impact between successive skew bridge-segments. Nonlinear Dynamics, 2013, 74, 911-928.	2.7	27
22	A localized lagrange multipliers approach for the problem of vehicle-bridge-interaction. Engineering Structures, 2018, 168, 82-92.	2.6	26
23	Closed-form rocking overturning conditions for a family of pulse ground motions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160662.	1.0	22
24	Dimensional Analysis of the Earthquake Response of a Pounding Oscillator. Journal of Engineering Mechanics - ASCE, 2010, 136, 299-310.	1.6	21
25	Application of short-time stochastic subspace identification to estimate bridge frequencies from a traversing vehicle. Engineering Structures, 2021, 230, 111688.	2.6	21
26	Monotonic loading testing and characterization of new multi-full-culm bamboo to steel connections. Construction and Building Materials, 2019, 201, 473-483.	3.2	20
27	Nonsmooth dynamics prediction of measured bridge response involving deckâ€abutment pounding. Earthquake Engineering and Structural Dynamics, 2017, 46, 1431-1452.	2.5	17
28	A Modified Bridge System method to characterize and decouple vehicle–bridge interaction. Acta Mechanica, 2020, 231, 3825-3845.	1.1	16
29	Dimensional analysis of the earthquake-induced pounding between inelastic structures. Bulletin of Earthquake Engineering, 2011, 9, 561-579.	2.3	15
30	A Dynamic Partitioning Method to solve the vehicle-bridge interaction problem. Computers and Structures, 2021, 251, 106547.	2.4	15
31	Subspace identification of bridge dynamics via traversing vehicle measurements. Journal of Sound and Vibration, 2022, 523, 116690.	2.1	14
32	Quasi-static reversed cyclic testing of multi-culm bamboo members with steel connectors. Journal of Building Engineering, 2020, 27, 100983.	1.6	13
33	Comparative evaluation of two simulation approaches of deck-abutment pounding in bridges. Engineering Structures, 2017, 148, 541-551.	2.6	12
34	Derailment mechanism of trains running over bridges during strong earthquakes. Procedia Engineering, 2017, 199, 2633-2638.	1.2	12
35	Circuit nonlinearity effect on the performance of an electromagnetic energy harvester-structure system. Engineering Structures, 2018, 173, 449-459.	2.6	10
36	MDOF extension of the Modified Bridge System method for vehicle–bridge interaction. Nonlinear Dynamics, 2020, 102, 2103-2123.	2.7	9

Elias G Dimitrakopoulos

#	Article	IF	CITATIONS
37	Non-linear behaviour and failure mechanism of bamboo poles in bending. Construction and Building Materials, 2021, 305, 124747.	3.2	9
38	Simulation of embedment phenomena on bamboo culms via a modified foundation modelling approach. Construction and Building Materials, 2021, 275, 122048.	3.2	8
39	Chattering: an overlooked peculiarity of rocking motion. Nonlinear Dynamics, 2022, 109, 459-477.	2.7	6
40	Pilot Study on Capacity-Based Design of Multiculm Bamboo Axial Members with Dowel-Type Connections. Journal of Structural Engineering, 2021, 147, .	1.7	5
41	Seismic Overturning of Rocking Structures with External Viscous Dampers. Computational Methods in Applied Sciences (Springer), 2013, , 243-258.	0.1	5
42	Simulation and experimental verification of an original full-scale bamboo truss. Engineering Structures, 2022, 256, 113965.	2.6	4
43	Insight into the behaviour of bamboo culms subjected to bending. Journal of the Royal Society Interface, 2022, 19, 20210913.	1.5	2
44	Scavenging vibration energy from seismically isolated bridges using an electromagnetic harvester. Proceedings of SPIE, 2014, , .	0.8	1
45	Experimental characterization of multi-full-culm bamboo to steel connections. Lecture Notes in Civil Engineering, 2020, , 245-250.	0.3	0