Maria Lucia Carneiro Vieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7344158/publications.pdf

Version: 2024-02-01

147726 155592 3,699 106 31 citations h-index papers

g-index 3774 113 113 113 docs citations times ranked citing authors all docs

55

#	Article	IF	CITATIONS
1	Genetic mapping reveals complex architecture and candidate genes involved in common bean response to <i>Meloidogyne incognita</i> infection. Plant Genome, 2022, 15, e20161.	1.6	4
2	Genome-wide association studies dissect the genetic architecture of seed shape and size in common bean. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
3	A reliable DNA extraction protocol for the medicinal plant Chrysobalanus icaco (Chrysobalanaceae), a recalcitrant species. Revista Brasileira De Botanica, 2022, 45, 619-624.	0.5	1
4	Large vs small genomes in Passiflora: the influence of the mobilome and the satellitome. Planta, 2021, 253, 86.	1.6	25
5	A genome sequence resource for the genus <i>Passiflora</i> , the genome of the wild diploid species <i>Passiflora organensis</i> . Plant Genome, 2021, 14, e20117.	1.6	8
6	Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes, 2021, 12, 1517.	1.0	20
7	A Repertory of Rearrangements and the Loss of an Inverted Repeat Region in Passiflora Chloroplast Genomes. Genome Biology and Evolution, 2020, 12, 1841-1857.	1.1	49
8	Improving yield and fruit quality traits in sweet passion fruit: Evidence for genotype by environment interaction and selection of promising genotypes. PLoS ONE, 2020, 15, e0232818.	1.1	16
9	Comparative cytogenetic maps of Passiflora alata and P. watsoniana (Passifloraceae) using BAC-FISH. Plant Systematics and Evolution, 2020, 306, 1.	0.3	7
10	Title is missing!. , 2020, 15, e0232818.		0
11	Title is missing!. , 2020, 15, e0232818.		0
12	Title is missing!. , 2020, 15, e0232818.		0
13	Title is missing!. , 2020, 15, e0232818.		0
14	Title is missing!. , 2020, 15, e0232818.		0
15	Title is missing!. , 2020, 15, e0232818.		0
16	Sweet orange genetic transformation with the <i>attacin</i> A gene under the control of phloem-specific promoters and inoculation with <i>Candidatus</i> Liberibacter asiaticus. Journal of Horticultural Science and Biotechnology, 2019, 94, 210-219.	0.9	14
17	Identification of passion fruit (Passiflora edulis) chromosomes using BAC-FISH. Chromosome Research, 2019, 27, 299-311.	1.0	10
18	Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis. Molecular Biology Reports, 2019, 46, 6117-6133.	1.0	8

#	Article	IF	CITATIONS
19	Evidence for Strong Kinship Influence on the Extent of Linkage Disequilibrium in Cultivated Common Beans. Genes, 2019, 10, 5.	1.0	32
20	Activity of Antarctic fungi extracts against phytopathogenic bacteria. Letters in Applied Microbiology, 2018, 66, 530-536.	1.0	22
21	A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Scientific Reports, 2018, 8, 13024.	1.6	18
22	Sugarcane Cell Wall-Associated Defense Responses to Infection by Sporisorium scitamineum. Frontiers in Plant Science, 2018, 9, 698.	1.7	33
23	Revisiting Meiosis in Sugarcane: Chromosomal Irregularities and the Prevalence of Bivalent Configurations. Frontiers in Genetics, 2018, 9, 213.	1.1	31
24	Sugarcane smut: shedding light on the development of the whip-shaped sorus. Annals of Botany, 2017, 119, mcw169.	1.4	25
25	The Sweet Passion Fruit (Passiflora alata) Crop: Genetic and Phenotypic Parameter Estimates and QTL Mapping for Fruit Traits. Tropical Plant Biology, 2017, 10, 18-29.	1.0	7
26	The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales. Frontiers in Plant Science, 2017, 8, 334.	1.7	79
27	Report on the development of putative functional SSR and SNP markers in passion fruits. BMC Research Notes, 2017, 10, 445.	0.6	9
28	Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology, 2016, 39, 312-328.	0.6	566
29	Host Transcriptional Profiling at Early and Later Stages of the Compatible Interaction Between <i>Phaseolus vulgaris</i> and <i>Meloidogyne incognita</i> . Phytopathology, 2016, 106, 282-294.	1.1	16
30	Molecular variability and genetic relationship among Brazilian strains of the sugarcane smut fungus. FEMS Microbiology Letters, 2016, 363, fnw277.	0.7	6
31	Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae. Data in Brief, 2016, 7, 704-708.	0.5	3
32	In vitro conservation of Passiflora —A review. Scientia Horticulturae, 2016, 211, 305-311.	1.7	28
33	Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae. International Journal of Food Microbiology, 2016, 221, 19-28.	2.1	49
34	RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease. PLoS ONE, 2016, 11, e0162237.	1.1	56
35	GENETIC TRANSFORMATION OF CITRUS SINENSIS 'HAMLIN' WITH ATTACIN A DRIVEN BY A PHLOEM TISSUE-SPECIFIC PROMOTER FOR RESISTANCE TO CANDIDATUS LIBERIBACTER SPP Acta Horticulturae, 2015, , 695-702.	0.1	8
36	Analysis of plant gene expression during passion fruit– <i>Xanthomonas axonopodis</i> interaction implicates lipoxygenase 2 in host defence. Annals of Applied Biology, 2015, 167, 135-155.	1.3	33

#	Article	IF	Citations
37	Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane. PLoS ONE, 2015, 10, e0129318.	1.1	93
38	Nucleotide diversity based on phaseolin and iron reductase genes in common bean accessions of different geographical origins. Genome, 2014, 57, 69-77.	0.9	2
39	Begin at the beginning: A BAC-end view of the passion fruit (Passiflora) genome. BMC Genomics, 2014, 15, 816.	1.2	34
40	Brazil nuts are subject to infection with B and G aflatoxin-producing fungus, Aspergillus pseudonomius. International Journal of Food Microbiology, 2014, 186, 14-21.	2.1	25
41	Molecular polymorphism and linkage analysis in sweet passion fruit, an outcrossing species. Annals of Applied Biology, 2013, 162, 347-361.	1.3	29
42	Development of microsatellite markers in sweet passion fruit, and identification of length and conformation polymorphisms within repeat sequences. Plant Breeding, 2013, 132, 731-735.	1.0	14
43	SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Scientific Reports, 2013, 3, 3399.	1.6	129
44	Identification of Stylosanthes guianensis varieties using molecular genetic analysis. AoB PLANTS, 2012, 2012, pls001.	1.2	13
45	A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genetics, 2012, 13, 51.	2.7	34
46	Genetic Variability of Beauveria bassiana and a DNA Marker for Environmental Monitoring of a Highly Virulent Isolate Against Cosmopolites sordidus. Indian Journal of Microbiology, 2012, 52, 569-574.	1.5	7
47	Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts. World Journal of Microbiology and Biotechnology, 2012, 28, 1817-1825.	1.7	34
48	Strain-specific polyketide synthase genes of Aspergillus niger. International Journal of Food Microbiology, 2012, 155, 137-145.	2.1	32
49	Genetic Diversity and a PCR-Based Method for <i>Xanthomonas axonopodis</i> Detection in Passion Fruit. Phytopathology, 2011, 101, 416-424.	1.1	15
50	Genetic Transformation of Passionflower and Evaluation of R ₁ and R ₂ Generations for Resistance to <i>Cowpea aphid borne mosaic virus</i> Plant Disease, 2011, 95, 1021-1025.	0.7	25
51	Progeny evaluation for resistance toPhaeosphaerialeaf spot in tropical maize. Canadian Journal of Plant Pathology, 2011, 33, 49-53.	0.8	3
52	Methylation patterns revealed by MSAP profiling in genetically stable somatic embryogenic cultures of Ocotea catharinensis (Lauraceae). In Vitro Cellular and Developmental Biology - Plant, 2010, 46, 368-377.	0.9	12
53	Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Molecular Breeding, 2010, 25, 25-45.	1.0	72
54	Transgenic Sweet Orange (Citrus sinensis L. Osbeck) Expressing the attacin A Gene for Resistance to Xanthomonas citri subsp. citri. Plant Molecular Biology Reporter, 2010, 28, 185-192.	1.0	54

#	Article	IF	CITATIONS
55	Outcrossing rate in sweet passion fruit based on molecular markers. Plant Breeding, 2010, 129, 727-730.	1.0	21
56	Karyotype characterization of Malpighia emarginata (Malpighiaceae). Revista Brasileira De Fruticultura, 2010, 32, 369-374.	0.2	3
57	Identification of a splicing coactivator gene that affects the production of ochratoxin a in Aspergillus carbonarius. Brazilian Archives of Biology and Technology, 2009, 52, 131-141.	0.5	0
58	Screening of Passiflora species for reaction to Cowpea aphid-borne mosaic virus reveals an immune wild species. Scientia Agricola, 2009, 66, 414-418.	0.6	29
59	Cytogenetic studies in some species of Passiflora L. (Passifloraceae): a review emphasizing Brazilian species. Brazilian Archives of Biology and Technology, 2008, 51, 247-258.	0.5	48
60	First report and differential colonization of Passiflora Species by the B biotype of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in Brazil. Neotropical Entomology, 2008, 37, 744-746.	0.5	5
61	An Integrated Molecular Map of Yellow Passion Fruit Based on Simultaneous Maximum-likelihood Estimation of Linkage and Linkage Phases. Journal of the American Society for Horticultural Science, 2008, 133, 35-41.	0.5	44
62	Cytological behaviour of the somatic hybridsPassiflora edulisf.flavicarpa +P.Âcincinnata. Plant Breeding, 2007, 126, 323-328.	1.0	9
63	Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome, 2007, 50, 266-277.	0.9	85
64	Assessment of Genetic Stability Among In Vitro Plants of Arachis retusa Using RAPD and AFLP Markers for Germplasm Preservation. Journal of Integrative Plant Biology, 2007, 49, 307-312.	4.1	12
65	Detection and quantification of Aspergillus westerdijkiae in coffee beans based on selective amplification of Î ² -tubulin gene by using real-time PCR. International Journal of Food Microbiology, 2007, 119, 270-276.	2.1	57
66	New insights into the in vitro organogenesis process: the case of Passiflora. Plant Cell, Tissue and Organ Culture, 2007, 91, 37-44.	1.2	42
67	Resistance to Passion fruit woodiness virus in Transgenic Passionflower Expressing the Virus Coat Protein Gene. Plant Disease, 2006, 90, 1026-1030.	0.7	47
68	Linkage and mapping of resistance genes to Xanthomonas axonopodis pv. passiflorae in yellow passion fruit. Genome, 2006, 49, 17-29.	0.9	26
69	Origin, evolution and genome distribution of microsatellites. Genetics and Molecular Biology, 2006, 29, 294-307.	0.6	263
70	Microparticle bombardment of StylosanthesÂguianensis: transformation parameters and expression of a methionine-rich 2S albumin gene. Plant Cell, Tissue and Organ Culture, 2006, 87, 167-179.	1.2	4
71	Efficient Genetic Transformation System for the Ochratoxigenic Fungus Aspergillus carbonarius. Current Microbiology, 2006, 52, 469-472.	1.0	15
72	Attacin A Gene from Tricloplusia ni Reduces Susceptibility to Xanthomonas axonopodis pv. citri in Transgenic Citrus sinensis `Hamlin'. Journal of the American Society for Horticultural Science, 2006, 131, 530-536.	0.5	67

#	Article	IF	Citations
7 3	Development and characterization of microsatellite markers from the yellow passion fruit (Passiflora edulis f. flavicarpa). Molecular Ecology Notes, 2005, 5, 331-333.	1.7	38
74	Isolation and characterization of microsatellite markers from the sweet passion fruit (Passiflora) Tj ETQq0 0 0 rgB	Γ <u>(O</u> verloc	R 10 Tf 50 70
75	Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: a study with Passiflora (Passifloraceae). Canadian Journal of Botany, 2005, 83, 287-301.	1.2	124
76	Genetic and Phenotypic Parameter Estimates for Yield and Fruit Quality Traits from a Single Wide Cross in Yellow Passion Fruit. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1978-1981.	0.5	36
77	Genetic relationships among Brazilian strains of Aspergillus ochraceus based on RAPD and ITS sequences. Canadian Journal of Microbiology, 2004, 50, 985-988.	0.8	14
78	Somatic hybridization between Citrus sinensis (L.) Osbeck and C. grandis (L.) Osbeck. Pesquisa Agropecuaria Brasileira, 2004, 39, 721-724.	0.9	12
79	Rescue of a non-viable accession and rapd analysis of recovered plants of Arachis retusa. Pesquisa Agropecuaria Brasileira, 2004, 39, 197-199.	0.9	3
80	Genetic-diversity assessed by microsatellites in tropical maize populations submitted to a high-intensity reciprocal recurrent selection. Euphytica, 2003, 134, 277-286.	0.6	31
81	Reciprocal recurrent selection effects on the genetic structure of tropical maize populations assessed at microsatellite loci. Genetics and Molecular Biology, 2003, 26, 355-364.	0.6	18
82	Isoenzymatic variability in tropical maize populations under reciprocal recurrent selection. Scientia Agricola, 2003, 60, 291-297.	0.6	4
83	Plant regeneration from proroplasts of alfalfa (Medicago sativa) via somatic embryogenesis. Scientia Agricola, 2003, 60, 683-689.	0.6	17
84	Técnicas para a obtenção de preparações citológicas com alta freqüência de metáfases mitóticas en plantas: Passiflora (Passifloraceae) e Crotalaria (Leguminosae). Acta Botanica Brasilica, 2003, 17, 363-370.	n 0.8	13
85	Predicting performance of soybean populations using genetic distances estimated with RAPD markers. Genetics and Molecular Biology, 2003, 26, 343-348.	0.6	9
86	RAPD-based genetic linkage maps of yellow passion fruit (Passiflora edulisSims. f.flavicarpaDeg.). Genome, 2002, 45, 670-678.	0.9	35
87	Factors influencing electroporation-mediated gene transfer to Stylosanthes guianensis (Aubl.) Sw. protoplasts. Genetics and Molecular Biology, 2002, 25, 73-80.	0.6	14
88	Genetic instability of sugarcane plants derived from meristem cultures. Genetics and Molecular Biology, 2002, 25, 91-96.	0.6	49
89	Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genetics and Molecular Biology, 2002, 25, 251-255.	0.6	53
90	Anatomical Study of Somatic Embryogenesis in Glycine max (L.) Merrill. Brazilian Archives of Biology and Technology, 2002, 45, 277-286.	0.5	18

#	Article	IF	Citations
91	Transient gene expression in electroporated intact tissues of Stylosanthes guianensis (Aubl.) Sw Scientia Agricola, 2001, 58, 759-765.	0.6	2
92	Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytologist, 2000, 147, 609-615.	3.5	117
93	Resposta in vitro e suscetibilidade ao Agrobacterium de duas cultivares de Stylosanthes guianensis. Pesquisa Agropecuaria Brasileira, 2000, 35, 733-742.	0.9	2
94	ANATOMICAL STUDIES OF IN VITRO ORGANOGENESIS INDUCED IN LEAF-DERIVED EXPLANTS OF PASSIONFRUIT. Pesquisa Agropecuaria Brasileira, 1999, 34, 2007-2013.	0.9	25
95	Endophytic fungi from Musa acuminata and their reintroduction into axenic plants. World Journal of Microbiology and Biotechnology, 1999, 15, 37-40.	1.7	43
96	Title is missing!. Euphytica, 1997, 98, 121-127.	0.6	20
97	Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theoretical and Applied Genetics, 1997, 94, 1023-1030.	1.8	115
98	Changes in N2 fixation in Stylosanthes scabra derived from tissue culture. Genetics and Molecular Biology, 1997, 20, 713-716.	1.0	5
99	Diversity among soil and insect isolates of Metarhizium anisopliae var. anisopliae detected by RAPD. Letters in Applied Microbiology, 1996, 22, 389-392.	1.0	43
100	Plant regeneration from protoplast fusion in Passiflora spp Plant Cell Reports, 1995, 15, 106-110.	2.8	32
101	Tissue culture studies on species ofPassiflora. Plant Cell, Tissue and Organ Culture, 1994, 36, 211-217.	1.2	64
102	Plant regeneration from protoplast cultures of Passiflora edulis var. flavicarpa Deg., P. amethystina Mikan. and P. cincinnata Mast Plant Cell Reports, 1993, 13, 103-106.	2.8	29
103	A Cytotaxonomic Study in Twelve Brazilian Taxa of Stylosanthes Sw., Leguminosae Cytologia, 1993, 58, 305-311.	0.2	12
104	Histological Analysis of Organogenesis and Somatic Embryogenesis Induced in Immature Tissues of Stylosanthes scabra. Annals of Botany, 1992, 70, 477-482.	1.4	27
105	A Method for Analysis of Meiosis in Anthers of Arabidopsis thaliana. Annals of Botany, 1990, 66, 717-719.	1.4	9
106	Plant regeneration from protoplasts isolated from seedling cotyledons of Stylosanthes guianensis, S. macrocephala and S. scabra. Plant Cell Reports, 1990, 9, 289-92.	2.8	12