Charalampos Tzoulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7344132/publications.pdf

Version: 2024-02-01

86 papers

3,012 citations

172386 29 h-index 51 g-index

98 all docs 98 docs citations

times ranked

98

4208 citing authors

#	Article	IF	CITATIONS
1	<scp><i>GBA</i></scp> and <scp><i>APOE</i></scp> Impact Cognitive Decline in Parkinson's Disease: A 10â€Year Populationâ€Based Study. Movement Disorders, 2022, 37, 1016-1027.	2.2	45
2	A nationwide study of the incidence, prevalence and mortality of Parkinson's disease in the Norwegian population. Npj Parkinson's Disease, 2022, 8, 19.	2.5	25
3	The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson's disease. Cell Metabolism, 2022, 34, 396-407.e6.	7.2	111
4	Ultra-deep whole genome bisulfite sequencing reveals a single methylation hotspot in human brain mitochondrial DNA. Epigenetics, 2022, 17, 906-921.	1.3	5
5	Mitochondrial Respiratory Chain Dysfunction—A Hallmark Pathology of Idiopathic Parkinson's Disease?. Frontiers in Cell and Developmental Biology, 2022, 10, 874596.	1.8	11
6	Early Forms of α-Synuclein Pathology Are Associated with Neuronal Complex I Deficiency in the Substantia Nigra of Individuals with Parkinson's Disease. Biomolecules, 2022, 12, 747.	1.8	6
7	Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson's disease brain. Molecular Neurodegeneration, 2021, 16, 31.	4.4	51
8	Real-World Dosing of OnabotulinumtoxinA and IncobotulinumtoxinA for Cervical Dystonia and Blepharospasm: Results from TRUDOSE and TRUDOSE II. Toxins, 2021, 13, 488.	1.5	2
9	Chip Protein U-Box Domain Truncation Affects Purkinje Neuron Morphology and Leads to Behavioral Changes in Zebrafish. Frontiers in Molecular Neuroscience, 2021, 14, 723912.	1.4	O
10	Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Reports, 2021, 36, 109668.	2.9	26
11	NSAID use is not associated with Parkinson's disease incidence: A Norwegian Prescription Database study. PLoS ONE, 2021, 16, e0256602.	1.1	7
12	The impact of common genetic variants in cognitive decline in the first seven years of Parkinson's disease: A longitudinal observational study. Neuroscience Letters, 2021, 764, 136243.	1.0	8
13	Distinct Mitochondrial Remodeling During Mesoderm Differentiation in a Human-Based Stem Cell Model. Frontiers in Cell and Developmental Biology, 2021, 9, 744777.	1.8	5
14	Meta-analysis of whole-exome sequencing data from two independent cohorts finds no evidence for rare variant enrichment in Parkinson disease associated loci. PLoS ONE, 2020, 15, e0239824.	1.1	11
15	LIVE@Home.Pathâ€"innovating the clinical pathway for home-dwelling people with dementia and their caregivers: study protocol for a mixed-method, stepped-wedge, randomized controlled trial. Trials, 2020, 21, 510.	0.7	16
16	Using urine to diagnose largeâ€scale mtDNA deletions in adult patients. Annals of Clinical and Translational Neurology, 2020, 7, 1318-1326.	1.7	11
17	Targeting NAD+ in translational research to relieve diseases and conditions of metabolic stress and ageing. Mechanisms of Ageing and Development, 2020, 186, 111208.	2.2	31
18	Mitochondrial respiratory chain deficiency correlates with the severity of neuropathology in sporadic Creutzfeldt-Jakob disease. Acta Neuropathologica Communications, 2020, 8, 50.	2.4	14

#	Article	IF	CITATIONS
19	Common gene expression signatures in Parkinson's disease are driven by changes in cell composition. Acta Neuropathologica Communications, 2020, 8, 55.	2.4	38
20	Diseaseâ€specific phenotypes in <scp>iPSC</scp> â€derived neural stem cells with <i> <scp>POLG</scp> </i> mutations. EMBO Molecular Medicine, 2020, 12, e12146.	3.3	38
21	Differential transcript usage in the Parkinson's disease brain. PLoS Genetics, 2020, 16, e1009182.	1.5	15
22	Differential transcript usage in the Parkinson's disease brain. , 2020, 16, e1009182.		0
23	Differential transcript usage in the Parkinson's disease brain. , 2020, 16, e1009182.		0
24	Differential transcript usage in the Parkinson's disease brain. , 2020, 16, e1009182.		0
25	Differential transcript usage in the Parkinson's disease brain. , 2020, 16, e1009182.		0
26	Title is missing!. , 2020, 15, e0239824.		0
27	Title is missing!. , 2020, 15, e0239824.		0
28	Title is missing!. , 2020, 15, e0239824.		0
29	Title is missing!. , 2020, 15, e0239824.		0
30	Poly-ADP-ribose assisted protein localization resolves that DJ-1, but not LRRK2 or \hat{l}_{\pm} -synuclein, is localized to the mitochondrial matrix. PLoS ONE, 2019, 14, e0219909.	1.1	7
31	Mitochondrial DNA depletion in sporadic inclusion body myositis. Neuromuscular Disorders, 2019, 29, 242-246.	0.3	10
32	Betaâ€propeller proteinâ€associated neurodegeneration: a case report and review of the literature. Clinical Case Reports (discontinued), 2018, 6, 353-362.	0.2	34
33	3,3′-Diaminobenzidine staining interferes with PCR-based DNA analysis. Scientific Reports, 2018, 8, 1272.	1.6	8
34	No evidence for rare TRAP1 mutations influencing the risk of idiopathic Parkinson's disease. Brain, 2018, 141, e16-e16.	3.7	4
35	Ultradeep mapping of neuronal mitochondrial deletions in Parkinson's disease. Neurobiology of Aging, 2018, 63, 120-127.	1.5	47
36	Neuronal complex I deficiency occurs throughout the Parkinson's disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage. Acta Neuropathologica, 2018, 135, 409-425.	3.9	89

#	Article	IF	Citations
37	Alzheimer disease associated variants in SORL1 accelerate dementia development in Parkinson disease. Neuroscience Letters, 2018, 674, 123-126.	1.0	9
38	Phenotype-genotype correlations in Leigh syndrome: new insights from a multicentre study of 96 patients. Journal of Medical Genetics, 2018, 55, 21-27.	1.5	54
39	Rare genetic variation in mitochondrial pathways influences the risk for Parkinson's disease. Movement Disorders, 2018, 33, 1591-1600.	2.2	51
40	Association of glucocerebrosidase polymorphisms and mutations with dementia in incident Parkinson's disease. Alzheimer's and Dementia, 2018, 14, 1293-1301.	0.4	23
41	Dopaminergic and Opioid Pathways Associated with Impulse Control Disorders in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 109.	1.1	32
42	Movement disorders in mitochondrial disease: a clinicopathological correlation. Current Opinion in Neurology, 2018, 31, 472-483.	1.8	4
43	The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro-Oncology, 2017, 19, now175.	0.6	50
44	PNKP Mutations Identified by Whole-Exome Sequencing in a Norwegian Patient with Sporadic Ataxia and Edema. Cerebellum, 2017, 16, 272-275.	1.4	17
45	<i>In vitro</i> characterization of six <i>STUB1</i> variants in spinocerebellar ataxia 16 reveals altered structural properties for the encoded CHIP proteins. Bioscience Reports, 2017, 37, .	1.1	27
46	The clinical spectrum and natural history of early-onset diseases due to DNA polymerase gamma mutations. Genetics in Medicine, 2017, 19, 1217-1225.	1.1	45
47	No evidence of ischemia in stroke-like lesions of mitochondrial POLG encephalopathy. Mitochondrion, 2017, 32, 10-15.	1.6	13
48	Simvastatin is associated with decreased risk of <scp>P</scp> arkinson disease. Annals of Neurology, 2017, 81, 329-330.	2.8	12
49	Increased levels of cell-free mitochondrial DNA in the cerebrospinal fluid of patients with multiple sclerosis. Mitochondrion, 2017, 34, 32-35.	1.6	46
50	Familial aggregation of Parkinson's disease may affect progression of motor symptoms and dementia. Movement Disorders, 2017, 32, 241-245.	2.2	10
51	The presence of anaemia negatively influences survival in patients with POLG disease. Journal of Inherited Metabolic Disease, 2017, 40, 861-866.	1.7	8
52	Glitazone use associated with reduced risk of Parkinson's disease. Movement Disorders, 2017, 32, 1594-1599.	2.2	90
53	Subcellular Parkinson's Disease-Specific Alpha-Synuclein Species Show Altered Behavior in Neurodegeneration. Molecular Neurobiology, 2017, 54, 7639-7655.	1.9	9
54	Understanding the Epilepsy in POLG Related Disease. International Journal of Molecular Sciences, 2017, 18, 1845.	1.8	30

#	Article	lF	CITATIONS
55	<i><scp>ADCK</scp>3</i> mutations with epilepsy, strokeâ€like episodes and ataxia: a <scp>POLG</scp> mimic?. European Journal of Neurology, 2016, 23, 1188-1194.	1.7	42
56	Management of dystonia in Europe: a survey of the European network for the study of the dystonia syndromes. European Journal of Neurology, 2016, 23, 772-779.	1.7	12
57	Mitochondrial DNA homeostasis is essential for nigrostriatal integrity. Mitochondrion, 2016, 28, 33-37.	1.6	32
58	Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nature Communications, 2016, 7, 13548.	5.8	197
59	Nigrostriatal denervation <i>sine</i> parkinsonism: Table 1. Brain, 2016, 139, e25-e25.	3.7	3
60	Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy. PLoS ONE, 2016, 11, e0149055.	1.1	18
61	Excellent response of intramedullary Erdheim-Chester disease to vemurafenib: a case report. BMC Research Notes, 2015, 8, 171.	0.6	32
62	Practical guidance for CD management involving treatment of botulinum toxin: a consensus statement. Journal of Neurology, 2015, 262, 2201-2213.	1.8	59
63	HTRA2 p.G399S in Parkinson disease, essential tremor, and tremulous cervical dystonia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2268.	3.3	14
64	En mann i 50-Ã¥rene med hÃyt ferritinnivÃ¥ og økende kognitiv svikt. Tidsskrift for Den Norske Laegeforening, 2015, 135, 1369-1372.	0.2	5
65	En kvinne i 70-Ã¥rene med langvarige gangvansker. Tidsskrift for Den Norske Laegeforening, 2015, 135, 1753-1755.	0.2	0
66	Spastic Paraplegia Type 7 Is Associated with Multiple Mitochondrial DNA Deletions. PLoS ONE, 2014, 9, e86340.	1.1	49
67	Myoclonus-dystonia and epilepsy in a family with a novel epsilon-sarcoglycan mutation. Journal of Neurology, 2014, 261, 358-362.	1.8	6
68	Molecular pathogenesis of polymerase gamma–related neurodegeneration. Annals of Neurology, 2014, 76, 66-81.	2.8	77
69	A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet Journal of Rare Diseases, 2014, 9, 52.	1.2	182
70	MRI characterisation of adult onset alpha-methylacyl-coA racemase deficiency diagnosed by exome sequencing. Orphanet Journal of Rare Diseases, 2013, 8, 1.	1.2	102
71	Progressive striatal necrosis associated with anti-NMDA receptor antibodies. BMC Neurology, 2013, 13, 55.	0.8	19
72	Severe nigrostriatal degeneration without clinical parkinsonism in patients with polymerase gamma mutations. Brain, 2013, 136, 2393-2404.	3.7	90

#	Article	IF	CITATIONS
73	Novel SACS Mutations Identified by Whole Exome Sequencing in a Norwegian Family with Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay. PLoS ONE, 2013, 8, e66145.	1.1	19
74	Acute mitochondrial encephalopathy reflects neuronal energy failure irrespective of which genome the genetic defect affects. Brain, 2012, 135, 3627-3634.	3.7	36
75	Erdheim–Chester disease presenting with an intramedullary spinal cord lesion. Journal of Neurology, 2012, 259, 2240-2242.	1.8	8
76	Number of CAG repeats in POLG1 and its association with Parkinson disease in the Norwegian population. Mitochondrion, 2012, 12, 640-643.	1.6	23
77	Leukoencephalopathy with brainstem and spinal cord involvement caused by a novel mutation in the DARS2 gene. Journal of Neurology, 2012, 259, 292-296.	1.8	29
78	Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes. Brain, 2010, 133, 1428-1437.	3.7	70
79	Differences in RNA processing underlie the tissue specific phenotype of ISCU myopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 539-544.	1.8	31
80	Serial Diffusion Imaging in a Case of Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes. Stroke, 2009, 40, e15-7.	1.0	49
81	Mitochondrial DNA depletion in progressive external ophthalmoplegia caused by <i>POLG1</i> mutations. Acta Neurologica Scandinavica, 2009, 120, 38-41.	1.0	29
82	Neuropsychological performance in patients with POLG1 mutations and the syndrome of mitochondrial spinocerebellar ataxia and epilepsy. Epilepsy and Behavior, 2009, 16, 172-174.	0.9	11
83	Hereditary spastic paraplegia caused by the novel mutation 1047insC in the SPG7 gene. Journal of Neurology, 2008, 255, 1142-1144.	1.8	23
84	MELAS ASSOCIATED WITH MUTATIONS IN THE <i>POLG1</i> GENE. Neurology, 2008, 70, 1054-1055.	1.5	9
85	POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain, 2008, 131, 818-828.	3.7	176
86	The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain, 2006, 129, 1685-1692.	3.7	337