Jindong Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7343358/publications.pdf

Version: 2024-02-01

197 papers 2,706 citations

304743 22 h-index 276875
41
g-index

200 all docs

200 docs citations

times ranked

200

2579 citing authors

#	Article	IF	CITATIONS
1	Monocular Visual-Inertial and Robotic-Arm Calibration in a Unifying Framework. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 146-159.	13.1	4
2	High-precision Calibration of Camera and IMU on Manipulator for Bio-inspired Robotic System. Journal of Bionic Engineering, 2022, 19, 299-313.	5.0	3
3	s-CAM: An Untethered Insertable Laparoscopic Surgical Camera Robot with Non-Contact Actuation. Sensors, 2022, 22, 3405.	3.8	1
4	Transmission dynamics and control methodology of COVID-19: A modeling study. Applied Mathematical Modelling, 2021, 89, 1983-1998.	4.2	31
5	Actuation Frequency Modeling and Prediction for Shape Memory Alloy Actuators. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1536-1546.	5.8	5
6	Recovering Stress Distribution on Deformable Tissue for a Magnetic Actuated Insertable Laparoscopic Surgical Camera., 2021, , .		2
7	Fast and Unsupervised Non-Local Feature Learning for Direct Volume Rendering of 3D Medical Images. , 2021, , .		1
8	MagicHand: Context-Aware Dexterous Grasping Using an Anthropomorphic Robotic Hand., 2020,,.		10
9	Validating an automated image identification process of a passive image-assisted dietary assessment method: proof of concept. Public Health Nutrition, 2020, 23, 2700-2710.	2.2	10
10	Segmenting areas of potential contamination for adaptive robotic disinfection in built environments. Building and Environment, 2020, 184, 107226.	6.9	40
11	Batch Normalization Masked Sparse Autoencoder for Robotic Grasping Detection. , 2020, , .		1
12	Mesoscale Shape Memory Alloy Actuator for Visual Clarity of Surgical Cameras in Minimally Invasive Robotic Surgery. IEEE Transactions on Medical Robotics and Bionics, 2019, 1, 135-144.	3.2	6
13	A Noninvasive Approach to Recovering the Lost Force Feedback for a Robotic-Assisted Insertable Laparoscopic Surgical Camera. , 2019, , .		5
14	Deep Reinforcement Learning With Optimized Reward Functions for Robotic Trajectory Planning. IEEE Access, 2019, 7, 105669-105679.	4.2	44
15	Robust Vehicle and Surrounding Environment Dynamic Analysis for Assistive Driving Using Visual-Inertial Measurements. IEEE Access, 2019, 7, 8002-8017.	4.2	1
16	Towards A Generic In Vivo In Situ Camera Lens Cleaning Module for Laparoscopic Surgery. , 2019, , .		0
17	Inverse Dynamics Modeling of Robotic Manipulator with Hierarchical Recurrent Network. , 2019, , .		6
18	A study on rotate vector reducer performance degradation based on acoustic emission techniques. , 2019, , .		2

#	Article	IF	Citations
19	Industrial Robot Rotate Vector Reducer Fault Detection Based on Hidden Markov Models., 2019,,.		8
20	Fine orientation control of an insertable robotic camera system for single incision laparoscopic surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15, e1957.	2.3	3
21	Automatic Lumbar Vertebrae Recognition in Intraoperative X-Ray Images Based on Hierarchical Recurrent Neural Network. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31, 132.	0.2	1
22	Wearable Heading Estimation for Motion Tracking in Health Care by Adaptive Fusion of Visual–Inertial Measurements. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1732-1743.	6.3	10
23	Relative motion estimation using visual–inertial optical flow. Autonomous Robots, 2018, 42, 615-629.	4.8	11
24	Robust orientation estimate via inertial guided visual sample consensus. Personal and Ubiquitous Computing, 2018, 22, 259-274.	2.8	2
25	Unsupervised Trajectory Segmentation and Promoting of Multi-Modal Surgical Demonstrations. , 2018, , .		4
26	Spatial Calibration for Thermal-RGB Cameras and Inertial Sensor System. , 2018, , .		2
27	A Fast Unsupervised Approach for Multi-Modality Surgical Trajectory Segmentation. IEEE Access, 2018, 6, 56411-56422.	4.2	8
28	Active 6-D position-pose estimation of a spatial circle using monocular eye-in-hand system. International Journal of Advanced Robotic Systems, 2018, 15, 172988141775369.	2.1	2
29	Perception of Vehicle and Traffic Dynamics Using Visual-Inertial Sensors for Assistive Driving. , 2018, , .		4
30	Retrogressive Analysis of Industrial Robot Rotate Vector Reducer Using Acoustic Emission Techniques. , $2018, , .$		4
31	Reliable Communication Mechanism Design for Interaction Between Android and ROS., 2018,,.		2
32	Design and Test of an In-Vivo Robotic Camera Integrated with Optimized Illumination System for Single-port Laparoscopic Surgery. , 2018, , .		1
33	Mechatronics and embedded systems 2017. Advances in Mechanical Engineering, 2018, 10, 168781401881460.	1.6	0
34	Automatic Global Level Set Approach for Lumbar Vertebrae CT Image Segmentation. BioMed Research International, 2018, 2018, 1-12.	1.9	9
35	Robust Principal Component Analysis via Symmetric Alternating Direction for Moving Object Detection. Lecture Notes in Computer Science, 2018, , 275-285.	1.3	0
36	Adaptive Absolute Ego-Motion Estimation Using Wearable Visual-Inertial Sensors for Indoor Positioning. Micromachines, 2018, 9, 113.	2.9	4

#	Article	IF	Citations
37	Transformable <italic>In Vivo</italic> Robotic Laparoscopic Camera With Optimized Illumination System for Single-Port Access Surgery: Initial Prototype. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1585-1596.	5.8	11
38	Modeling and analysis of a laparoscopic camera's interaction with abdomen tissue. , 2017, , .		9
39	Rotate Vector Reducer Crankshaft Fault Diagnosis Using Acoustic Emission Techniques. , 2017, , .		10
40	Initial design and results of an untethered insertable laparoscopic robotic surgical camera system. , 2017, , .		6
41	Kinematic chain based multi-joint capturing using monocular visual-inertial measurements., 2017,,.		2
42	A novel laparoscopic camera robot with in-vivo lens cleaning and debris prevention modules. , 2017, , .		9
43	A fast search algorithm based on image pyramid for robotic grasping. , 2017, , .		4
44	Inertial-based real-time human upper limb tracking using twists and exponential maps in free-living environments. , 2017 , , .		1
45	Tracking of Human Joints Using Twist and Exponential Map. , 2017, , .		0
46	C-arm based image-guided percutaneous puncture of minimally invasive spine surgery., 2017,,.		1
47	Bi-Directional LSTM Recurrent Neural Network for Lumbar Vertebrae Identification in X-Ray Images. , 2017, , .		1
48	Optical design of an in vivo laparoscopic lighting system. Journal of Biomedical Optics, 2017, 22, 1.	2.6	8
49	Mechatronics and embedded systems 2015. Advances in Mechanical Engineering, 2016, 8, 168781401667350.	1.6	0
50	A novel approach to orientation estimation using inertial cues and visual feature locality constraint, , 2016, , .		2
51	Hardware design for a cable-free fully insertable wireless laparoscopic robotic camera. , 2016, 2016, 5128-5131.		6
52	Rotational Coordinate Transformation forÂVisual-Inertial Sensor Fusion. Lecture Notes in Computer Science, 2016, , 431-440.	1.3	2
53	Automatic Lumbar Vertebrae Detection Based on Feature Fusion Deep Learning for Partial Occluded C-arm X-ray Images. , 2016, 2016, 647-650.		13
54	Data synthesis in the Community Land Model for ecosystem simulation. Journal of Computational Science, 2016, 13, 83-95.	2.9	1

#	Article	IF	CITATIONS
55	Design of a Magnetic Actuated Fully Insertable Robotic Camera System for Single-Incision Laparoscopic Surgery. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1966-1976.	5.8	22
56	RT-ROS: A real-time ROS architecture on multi-core processors. Future Generation Computer Systems, 2016, 56, 171-178.	7.5	62
57	DietCam: Multiview Food Recognition Using a Multikernel SVM. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 848-855.	6.3	77
58	A Confidence Weighted Real-Time Depth Filter for 3D Reconstruction. IFIP Advances in Information and Communication Technology, 2016, , 222-231.	0.7	1
59	Control of a Magnetic Actuated Robotic Surgical camera system for single incision laparoscopic surgery. , 2015, , .		10
60	Inertial Guided Visual Sample Consensus based wearable orientation estimation for body motion tracking. , 2015 , , .		0
61	Loop Closing Detection in RGB-D SLAM Combining Appearance and Geometric Constraints. Sensors, 2015, 15, 14639-14660.	3.8	17
62	RGB-D SLAM Combining Visual Odometry and Extended Information Filter. Sensors, 2015, 15, 18742-18766.	3.8	4
63	Design and analysis of a magnetic actuated capsule camera robot for single incision laparoscopic surgery. , 2015, , .		12
64	Adaptive sampling and sensing approach with mobile sensor networks., 2015,,.		1
65	Recognition of Car Makes and Models From a Single Traffic-Camera Image. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 3182-3192.	8.0	66
66	Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering, 2015, 12, 1181-1190.	5.2	34
67	A novel automatically initialized level set approach based on region correlation for lumbar vertebrae CT image segmentation. , 2015, , .		10
68	Orientation estimation using visual and inertial sensors. , 2015, , .		2
69	DietCam: Multi-view regular shape food recognition with a camera phone. Pervasive and Mobile Computing, 2015, 19, 108-121.	3.3	29
70	Design of a unified active locomotion mechanism for a capsule-shaped laparoscopic camera system. , 2014, , .		16
71	Demonstration Paper., 2014,,.		0
72	A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks. Sensors, 2014, 14, 5994-6011.	3.8	37

#	Article	IF	CITATIONS
73	Design of a unified active locomotion mechanism for a wireless laparoscopic camera system. , 2014, , .		7
74	Monocular camera and IMU integration for indoor position estimation. , 2014, 2014, 1198-201.		4
75	Geometry constrained sparse embedding for multi-dimensional transfer function design in direct volume rendering. , 2014, , .		2
76	Ambient motion estimation in dynamic scenes using wearable visual-inertial sensors. , 2014, , .		3
77	A Case Study on Formal Analysis of an Automated Guided Vehicle System. Journal of Applied Mathematics, 2014, 2014, 1-10.	0.9	1
78	RGMP-ROS: A real-time ROS architecture of hybrid RTOS and GPOS on multi-core processor. , 2014, , .		11
79	Motion planning with Satisfiability Modulo Theories. , 2014, , .		12
80	Intelligent mobility assisted mobile sensor network localization., 2014,,.		1
81	An inertial-based human motion tracking system with twists and exponential maps. , 2014, , .		10
82	Accurate Human Navigation Using Wearable Monocular Visual and Inertial Sensors. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 203-213.	4.7	53
83	Two-tier target tracking framework in distributed sensor networks. International Journal of Sensor Networks, 2014, 16, 32.	0.4	3
84	Robust and Fast Initialization for Intensity-Based 2D/3D Registration. Advances in Mechanical Engineering, 2014, 6, 989254.	1.6	5
85	Mechatronics and Embedded System 2014. Advances in Mechanical Engineering, 2014, 6, 893568.	1.6	0
86	Mechatronics and Embedded Systems. Advances in Mechanical Engineering, 2014, 6, 239452.	1.6	0
87	Virtual Reality Aided Positioning of Mobile C-Arms for Image-Guided Surgery. Advances in Mechanical Engineering, 2014, 6, 943025.	1.6	2
88	An Adaptive-Gain Complementary Filter for Real-Time Human Motion Tracking With MARG Sensors in Free-Living Environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 254-264.	4.9	98
89	Development and experiment of CSM-based industrial robot servoing control system. , 2013, , .		0
90	A novel autonomous self-assembly distributed swarm flying robot. Chinese Journal of Aeronautics, 2013, 26, 791-800.	5. 3	12

#	Article	IF	Citations
91	Wearable navigation system for the blind people in dynamic environments., 2013,,.		7
92	A 3D object model for wireless camera networks with network constraints. Transactions of the Institute of Measurement and Control, 2013, 35, 866-874.	1.7	5
93	Adaptive-frame-rate monocular vision and IMU fusion for robust indoor positioning. , 2013, , .		1
94	Kinematics and the Implementation of a Modular Caterpillar Robot in Trapezoidal Wave Locomotion. International Journal of Advanced Robotic Systems, 2013, 10, 304.	2.1	6
95	Active Sensing with Mobile Sensor Networks: A Survey. Journal of Communications, 2013, 8, 110-127.	1.6	4
96	PCA & Description PCA &		4
97	A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks. Sensors, 2012, 12, 12844-12869.	3.8	37
98	A fast Adaptive-Gain Orientation Filter of inertial/magnetic data for human motion tracking in free-living environments., 2012, 2012, 6760-3.		3
99	Docking System Design and Self-Assembly Control of Distributed Swarm Flying Robots. International Journal of Advanced Robotic Systems, 2012, 9, 186.	2.1	4
100	Tilt-click: One-handed eyes-free numeric and symbol input for calculator applications. , 2012, , .		0
101	Adaptive sampling using mobile sensor networks. , 2012, , .		12
102	DietCam: Automatic dietary assessment with mobile camera phones. Pervasive and Mobile Computing, 2012, 8, 147-163.	3.3	193
103	Self-assembly control and experiments in swarm modular robots. Science China Technological Sciences, 2012, 55, 1118-1131.	4.0	20
104	Body Sensor Network Based Context-Aware QRS Detection. Journal of Signal Processing Systems, 2012, 67, 93-103.	2.1	11
105	A Real-Time Cardiac Arrhythmia Classification System with Wearable Electrocardiogram. , 2011, , .		14
106	Omni-vision mobile robot vSLAM based on spherical camera model. , 2011, , .		0
107	A real-time cardiac arrhythmia classification system with wearable electrocardiogram. , 2011, , .		2
108	Sambot: A Self-Assembly Modular Robot System. IEEE/ASME Transactions on Mechatronics, 2011, 16, 745-757.	5.8	133

#	Article	IF	CITATIONS
109	Layered hidden Markov models for real-time daily activity monitoring using body sensor networks. Knowledge and Information Systems, 2011, 29, 479-494.	3.2	14
110	Pedestrian positioning with physical activity classification for indoors. , 2011, , .		8
111	Adaptive sampling using mobile robotic sensors. , 2011, , .		1
112	DietCam: Regular Shape Food Recognition with a Camera Phone. , 2011, , .		46
113	3D Information retrieval in Mobile Robot Vision based on spherical compound eye. , 2011, , .		6
114	A general framework integrating exploration, self-assembly and locomotion control for swarm robots. , 2011, , .		1
115	Self-assembly and locomotion of diverse structures for swarm robots on adaption application. , 2011, , .		0
116	Adaptive sampling using mobile robotic sensors. , 2011, , .		0
117	PAMS., 2010,,.		6
118	Heartbeat-Driven Medium-Access Control for Body Sensor Networks. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 44-51.	3.2	128
119			
	Yet another user input method: Accelerometer assisted single key input., 2010, , .		2
120	Yet another user input method: Accelerometer assisted single key input. , 2010, , . The distributed control and experiments of directional self-assembly for modular swarm robots. , 2010, , .		8
	The distributed control and experiments of directional self-assembly for modular swarm robots. ,	1.3	
120	The distributed control and experiments of directional self-assembly for modular swarm robots. , 2010, , .	1.3	8
120 121	The distributed control and experiments of directional self-assembly for modular swarm robots., 2010,,. A Sensing and Robot Navigation of Hybrid Sensor Network. Wireless Sensor Network, 2010, 02, 267-273.	1.3	8
120 121 122	The distributed control and experiments of directional self-assembly for modular swarm robots., 2010,,. A Sensing and Robot Navigation of Hybrid Sensor Network. Wireless Sensor Network, 2010, 02, 267-273. An adaptive mobile robots tethering algorithm in constrained environments., 2009,,.	1.3	8 2 1
120 121 122 123	The distributed control and experiments of directional self-assembly for modular swarm robots., 2010,,. A Sensing and Robot Navigation of Hybrid Sensor Network. Wireless Sensor Network, 2010, 02, 267-273. An adaptive mobile robots tethering algorithm in constrained environments., 2009,,	1.3	8 2 1 2

#	Article	IF	CITATIONS
127	HealthAware: Tackling obesity with health aware smart phone systems. , 2009, , .		50
128	Dynamics Modeling and Analysis of a Swimming Microrobot for Controlled Drug Delivery. IEEE Transactions on Automation Science and Engineering, 2009, 6, 220-227.	5.2	37
129	The maintaining of communication links quality in unknown environment. , 2009, , .		4
130	A 3D object model for wireless camera networks with network constraints. , 2009, , .		1
131	Compressive mobile sensing in robotic mapping. , 2009, , .		4
132	A collaboration-based hybrid vehicular sensor network architecture. , 2008, , .		14
133	ECG segmentation in a body sensor network using Hidden Markov Models. Parallel and Distributed Processing Symposium (IPDPS), Proceedings of the International Conference on, 2008, , .	1.0	3
134	Compressive mobile sensing for robotic mapping. , 2008, , .		2
135	Secure Group communication in Body Area Networks. , 2008, , .		0
136	ECG segmentation in a body sensor network using Hidden Markov Models. , 2008, , .		0
137	Layered hidden Markov models for real-time daily activity monitoring using body sensor networks. , 2008, , .		1
138	Deployment of multi-robot systems under the nonholonomic constraint., 2008,,.		4
139	Body sensor networks based sensor fusion for cardiovascular biosignal predictions. , 2008, , .		3
140	A Distributed algorithm for mobile robot localization and mapping in wireless sensor networks. , 2008, , .		4
141	Localization for hybrid sensor networks in unknown environments using received signal strength indicator., 2008,,.		6
142	A Scalable Graph Model and Coordination Algorithms for Mobile Sensor Networks. Signals and Communication Technology, 2008, , 65-83.	0.5	3
143	ECG Segmentation in a Body Sensor Network Using Adaptive Hidden Markov Models. , 2008, , .		0
144	Dynamic resource allocation for target tracking in robotic sensor networks., 2007,,.		1

#	Article	IF	CITATIONS
145	Real-time Daily Activity Classification with Wireless Sensor Networks using Hidden Markov Model. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 3192-5.	0.5	48
146	Heartbeat driven medium access control for body sensor networks. , 2007, , .		42
147	Near optimal two-tier target tracking in sensor networks. , 2007, , .		2
148	Medium Access Control for Body Sensor Networks. , 2007, , .		9
149	Body Sensor Network Based Context Aware QRS Detection. , 2006, , .		3
150	Sensor Network Localization in Constrained 3-D Spaces. , 2006, , .		18
151	Gait Perception and Coordinated Control of a Novel Biped Robot with Heterogeneous Legs. , 2006, , .		6
152	Multi-robot Coordination for Elusive Target Interception Aided by Sensor Networks. , 2006, , .		4
153	Spatiotemporal sensor network and mobile robot coordination in constrained environments. , 2006, , .		1
154	Selection and navigation of mobile sensor nodes using a sensor network. Pervasive and Mobile Computing, 2006, 2, 65-84.	3.3	68
155	Distributed multi-robot coordination in area exploration. Robotics and Autonomous Systems, 2006, 54, 945-955.	5.1	182
156	Body Sensor Network Based Context Aware QRS Detection. , 2006, 2006, 3266-9.		12
157	Research of TDOA Based Self-localization Approach in Wireless Sensor Network. , 2006, , .		30
158	Body Sensor Network Based Context Aware QRS Detection. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
159	Coordinated formation control of multiple nonlinear systems. Journal of Control Theory and Applications, 2005, 3, 1-19.	0.8	3
160	Data fusion and error reduction algorithms for sensor networks. , 2005, , .		3
161	Simultaneous localization and mobile robot navigation in a hybrid sensor network., 2005,,.		36
162	Dynamic resource allocation for target tracking in sensor and robot networks. , 2005, 5778, 412.		0

#	Article	IF	CITATIONS
163	Robust adaptive control of quasi-LPV systems. , 2005, , .		5
164	An Ultra-low-power Medium Access Control Protocol for Body Sensor Network., 2005, 2005, 2451-4.		15
165	Mobile sensor deployment for a dynamic cluster-based target tracking sensor network. , 2005, , .		15
166	On-line parameter identification of a cart by mobile manipulation pushing. Robotics and Autonomous Systems, 2004, 46, 29-46.	5.1	1
167	A singularity-free motion control algorithm for robot manipulators—a hybrid system approach. Automatica, 2004, 40, 1239-1245.	5.0	42
168	Coordination of multi-robot and human systems in a perceptive reference frame. International Journal of Vehicle Autonomous Systems, 2004, 2, 201.	0.2	1
169	Peer-to-peer model for the area coverage and cooperative control of mobile sensor networks. , 2004, 5403, 439.		11
170	A novel wireless local positioning system for airport (indoor) security. , 2004, , .		14
171	HYBRID FORCE/POSITION CONTROL OF REDUNDANT MOBILE MANIPULATORS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 383-388.	0.4	3
172	Integrated sensing and control of mobile manipulators. , 0, , .		10
173	The role of sensing in motion stability of mobile robots. , 0, , .		0
174	Analysis and design of non-time based motion controller for mobile robots. , 0, , .		26
175	Non-time based tracking controller for mobile robots. , 0, , .		6
176	Unified model approach for planning and control of mobile manipulators. , 0, , .		19
177	Hybrid force/position control in moving hand coordinate frame. , 0, , .		3
178	Hybrid system controller for robot motions. , 0, , .		0
179	Integrated task planning and control for mobile manipulators. , 0, , .		2
180	Interactive model identification for nonholonomic cart pushed by a mobile manipulator. , 0, , .		3

#	Article	IF	CITATIONS
181	A high sensitivity force sensor for microassembly: design and experiments. , 0, , .		18
182	Minimum viewpoint planning for dimensional inspection of sheet metal parts. , 0, , .		0
183	Multi-sensor referenced gait control of a miniature climbing robot. , 0, , .		5
184	Viewpoint reduction in vision sensor planning for dimensional inspection. , 0, , .		2
185	Coordination of human and mobile manipulator formation in a perceptive reference fame., 0,,.		6
186	Integration of sensing, computation, communication and cooperation for distributed mobile sensor networks. , 0, , .		5
187	Hybrid system model for event-based planning and control of robot operations. , 0, , .		3
188	A sensor networked approach for intelligent transportation systems. , 0, , .		9
189	Modeling and Controller Design for Multiple Mobile Robots Formation Control. , 0, , .		10
190	Multiple vehicle systems for sensor network area coverage., 0, , .		10
191	Using Bluetooth and sensor networks for intelligent transportation systems. , 0, , .		43
192	A scalable graph model and coordination algorithms for multi-robot systems. , 0, , .		8
193	Sintering finish point intelligent control., 0,,.		3
194	An ultra-low-power medium access control protocol for body sensor network. , 0, , .		21
195	Selection and Navigation of Mobile Sensor Nodes Using a Sensor Network. , 0, , .		30
196	Dynamics modeling and analysis of a swimming microrobot for controlled drug delivery. , 0, , .		5
197	DietCam: Multiview Regular-Shaped Food Recognition with a Camera Phone. , 0, , .		0