Hamze Mousavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734318/publications.pdf Version: 2024-02-01

HAMZE MOUSAVI

#	Article	IF	CITATIONS
1	Mechanical response of double-stranded DNA to dynamic excitation. JVC/Journal of Vibration and Control, 2023, 29, 214-224.	2.6	2
2	Vibrational properties of DNA in different models. Mechanics of Advanced Materials and Structures, 2022, 29, 3950-3960.	2.6	2
3	The transport properties of poly(C)-poly(C) DNA oligomers in the Harrison's model. Journal of Molecular Graphics and Modelling, 2022, 112, 108138.	2.4	3
4	Hydrogenation effects on the thermal and magnetic properties of mono- and bilayer graphene. Carbon Letters, 2021, 31, 1089-1096.	5.9	4
5	Electron transport of carbon atoms sequence in two-band model. European Physical Journal Plus, 2021, 136, 1.	2.6	3
6	Tight-binding description of semiconductive conjugated polymers. Computational and Theoretical Chemistry, 2021, 1199, 113190.	2.5	4
7	Multi-band Tight-Binding Model of MoS2 Monolayer. Journal of Electronic Materials, 2020, 49, 3599-3608.	2.2	13
8	Electronic properties of different configurations of double-strand DNA-Like nanowires. Solid State Communications, 2020, 319, 113974.	1.9	11
9	Electronic Properties of Graphyne and Graphdiyne in Tight-binding Model. ECS Journal of Solid State Science and Technology, 2020, 9, 031003.	1.8	18
10	Transdimensional epsilon-near-zero modes in planar plasmonic nanostructures. Physical Review Research, 2020, 2, .	3.6	17
11	Magnetic and thermal characteristics of armchair graphene nanoribbons in the two-band Harrison model. Journal of Magnetism and Magnetic Materials, 2019, 469, 405-410.	2.3	24
12	Electrical and thermal conductivities of few-layer armchair graphene nanoribbons. European Physical Journal B, 2019, 92, 1.	1.5	12
13	Semiconducting behavior of substitutionally doped bilayer graphene. Physica B: Condensed Matter, 2018, 530, 90-94.	2.7	15
14	Nonlinear electron transport across short DNA segment between graphene leads. Solid State Communications, 2018, 279, 30-33.	1.9	16
15	Graphene Nanoribbon Superconductor. Journal of Low Temperature Physics, 2018, 193, 12-20.	1.4	3
16	Optical response of finite-thickness ultrathin plasmonic films. MRS Communications, 2018, 8, 1092-1097.	1.8	13
17	Electron doping effects on the electrical conductivity of zigzag carbon nanotubes and corresponding unzipped armchair graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 87-91.	2.7	15
18	Electronic thermal conductivity of armchair graphene nanoribbons and zigzag carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85, 248-252.	2.7	12

HAMZE MOUSAVI

#	Article	IF	CITATIONS
19	Pauli magnetic susceptibility of bilayer graphene and hexagonal boron-nitride. Physica B: Condensed Matter, 2016, 502, 132-139.	2.7	17
20	Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3823-3827.	2.1	12
21	Electronic heat capacity and thermal conductivity of armchair graphene nanoribbons. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	21
22	Tight-Binding Investigation of Thermal Conductivity of Graphene and Few-Layer Graphene Systems. International Journal of Thermophysics, 2015, 36, 2638-2646.	2.1	4
23	Magnetic susceptibility and heat capacity of graphene in two-band Harrison model. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 135-139.	2.7	13
24	Controlling the Bandgap of Boron Nitride Nanotubes with Carbon Doping. Journal of Electronic Materials, 2015, 44, 2693-2698.	2.2	7
25	Electronic properties of long DNA nanowires in dry and wet conditions. Solid State Communications, 2015, 222, 42-48.	1.9	19
26	Graphene to graphane: Two-band approach. Superlattices and Microstructures, 2015, 88, 434-441.	3.1	13
27	Electronic properties of impurity-infected few-layer graphene nanoribbons. Physica B: Condensed Matter, 2015, 458, 107-113.	2.7	2
28	Flake Electrical Conductivity of Few-Layer Graphene. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	10
29	The Hall conductivity of graphene. Semiconductors, 2014, 48, 636-639.	0.5	1
30	Heat capacity of hexagonal boron nitride sheet in Holstein model. Semiconductors, 2014, 48, 617-620.	0.5	12
31	Sublattice Superconductivity in Boron Nitride Nanotube. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2905-2909.	1.8	5
32	Metallic and semimetallic properties of doped graphene and boron nitride planes. Solid State Communications, 2013, 153, 17-22.	1.9	4
33	Electronic properties of doped gapped graphene. Physica B: Condensed Matter, 2013, 414, 78-82.	2.7	13
34	Electronic heat capacity and conductivity of gapped graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 50, 11-16.	2.7	32
35	Heat Capacity of Defective Semiconducting Carbon Nanotubes. International Journal of Thermophysics, 2013, 34, 160-169.	2.1	1
36	Plasmons in spatially separated rolled-up electron-hole double-layer systems. Journal of Applied Physics, 2013, 114, 034303.	2.5	0

HAMZE MOUSAVI

#	Article	IF	CITATIONS
37	Optical Conductivity of Graphene Sheet Including Electron-Phonon Interaction. Communications in Theoretical Physics, 2012, 57, 482-484.	2.5	2
38	Electronic specific heat of carbon nanotubes. Physica Scripta, 2012, 85, 065602.	2.5	3
39	Effects of Holstein phonons on the electrical conductivity of carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1722-1724.	2.7	13
40	Carbon dioxide detection by boron nitride nanotubes. Applied Physics A: Materials Science and Processing, 2012, 108, 283-289.	2.3	20
41	Optical conductivity of carbon nanotubes. Optics Communications, 2012, 285, 3137-3139.	2.1	16
42	Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sciences, 2011, 13, 1459-1464.	3.2	65
43	Gas adsorption effects on the electrical conductivity of semiconducting carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 454-459.	2.7	1
44	Graphene susceptibility in Holstein model. Journal of Magnetism and Magnetic Materials, 2011, 323, 1537-1540.	2.3	16
45	Boron doping effects on graphene susceptibility. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 971-974.	2.7	1
46	Graphene as Gas Sensors. Communications in Theoretical Physics, 2011, 56, 373-376.	2.5	17
47	Doped graphene as a superconductor. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2953-2956.	2.1	9
48	The impact of gas molecule adsorption on the orbital magnetic susceptibility of graphene. Journal of Magnetism and Magnetic Materials, 2010, 322, 2533-2536.	2.3	21
49	Effects of adsorbed gas on the electrical conductivity of metallic carbon nanotubes. Solid State Communications, 2010, 150, 755-758.	1.9	13
50	On Superconductivity State in Pure Graphene. Communications in Theoretical Physics, 2010, 54, 753-755.	2.5	3
51	ELECTRON–PHONON INTERACTION IN CARBON NANOTUBES. Modern Physics Letters B, 2010, 24, 2947-2954.	1.9	14
52	Investigation of non-magnetic impurity doping effect on the MgB ₂ superconductor critical temperature. Journal of Physics Condensed Matter, 2008, 20, 095212.	1.8	2
53	The validity of Anderson's theorem for binary alloy s-wave superconductors in the Bardeen–Cooper–Schrieffer regime. Superconductor Science and Technology, 2006, 19, 449-453.	3.5	3
54	Harrison Model of Polyynic Carbyne Chains. ECS Journal of Solid State Science and Technology, 0, , .	1.8	4