Mar M Castellano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7343134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial: Translation Regulation and Protein Folding. Frontiers in Plant Science, 2022, 13, 858794.	3.6	Ο
2	The co haperone HOP participates in TIR1 stabilisation and in auxin response in plants. Plant, Cell and Environment, 2022, 45, 2508-2519.	5.7	9
3	High overexpression of CERES, a plant regulator of translation, induces different phenotypical defence responses during TuMV infection. Plant Journal, 2021, 107, 256-267.	5.7	1
4	The co-chaperone HOP3 participates in jasmonic acid signaling by regulating CORONATINE-INSENSITIVE 1 activity. Plant Physiology, 2021, 187, 1679-1689.	4.8	7
5	Peculiarities of the regulation of translation initiation in plants. Current Opinion in Plant Biology, 2021, 63, 102073.	7.1	15
6	elF2α Phosphorylation by GCN2 Is Induced in the Presence of Chitin and Plays an Important Role in Plant Defense against B. cinerea Infection. International Journal of Molecular Sciences, 2020, 21, 7335.	4.1	5
7	HOP, a Co-chaperone Involved in Response to Stress in Plants. Frontiers in Plant Science, 2020, 11, 591940.	3.6	12
8	Arabidopsis SME1 Regulates Plant Development and Response to Abiotic Stress by Determining Spliceosome Activity Specificity. Plant Cell, 2019, 31, 537-554.	6.6	42
9	A novel elF4E-interacting protein that forms non-canonical translation initiation complexes. Nature Plants, 2019, 5, 1283-1296.	9.3	26
10	Coimmunoprecipitation of Interacting Proteins in Plants. Methods in Molecular Biology, 2018, 1794, 279-287.	0.9	21
11	HOP family plays a major role in longâ€ŧerm acquired thermotolerance in Arabidopsis. Plant, Cell and Environment, 2018, 41, 1852-1869.	5.7	37
12	HOP3, a member of the HOP family in Arabidopsis, interacts with BiP and plays a major role in the ER stress response. Plant, Cell and Environment, 2017, 40, 1341-1355.	5.7	52
13	HOP3 a new regulator of the ER stress response in Arabidopsis with possible implications in plant development and response to biotic and abiotic stresses. Plant Signaling and Behavior, 2017, 12, e1317421.	2.4	20
14	Regulation of Translation by TOR, elF4E and elF2α in Plants: Current Knowledge, Challenges and Future Perspectives. Frontiers in Plant Science, 2017, 8, 644.	3.6	59
15	Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis. Plant, Cell and Environment, 2016, 39, 1264-1278.	5.7	94
16	Evolutionary Aspects of Translation Regulation During Abiotic Stress and Development in Plants. , 2016, , 477-490.		4
17	The <i>Arabidopsis</i> 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation Â. Plant Cell, 2014, 26, 3326-3342.	6.6	178
18	Regulation of Translation Initiation under Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 2013, 14, 4670-4683.	4.1	45

MAR M CASTELLANO

#	Article	IF	CITATIONS
19	Analysis of Genome-Wide Changes in the Translatome of Arabidopsis Seedlings Subjected to Heat Stress. PLoS ONE, 2013, 8, e71425.	2.5	98
20	Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes?. Comparative and Functional Genomics, 2012, 2012, 1-8.	2.0	47
21	Phosducin-Like Protein 3 Is Required for Microtubule-Dependent Steps of Cell Division but Not for Meristem Growth in <i>Arabidopsis</i> Â Â. Plant Cell, 2008, 20, 969-981.	6.6	24
22	GEM, a Novel Factor in the Coordination of Cell Division to Cell Fate Decisions in the Arabidopsis Epidermis. Plant Signaling and Behavior, 2007, 2, 494-495.	2.4	11
23	A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature, 2007, 447, 213-217.	27.8	119
24	Intercellular signalling in the transition from stem cells to organogenesis in meristems. Current Opinion in Plant Biology, 2005, 8, 26-31.	7.1	32
25	The genes encoding Arabidopsis ORC subunits are E2F targets and the two ORC1 genes are differently expressed in proliferating and endoreplicating cells. Nucleic Acids Research, 2005, 33, 5404-5414.	14.5	53
26	DNA Replication Licensing Affects Cell Proliferation or Endoreplication in a Cell Type–Specific Manner. Plant Cell, 2004, 16, 2380-2393.	6.6	151
27	Geminivirus DNA replication and cell cycle interactions. Veterinary Microbiology, 2004, 98, 111-119.	1.9	94
28	Targeted Destruction of DNA Replication Protein Cdc6 by Cell Death Pathways in Mammals and Yeast. Molecular Biology of the Cell, 2002, 13, 1536-1549.	2.1	75
29	G1 to S transition: more than a cell cycle engine switch. Current Opinion in Plant Biology, 2002, 5, 480-486.	7.1	155
30	Interaction of Geminivirus Rep Protein with Replication Factor C and Its Potential Role during Geminivirus DNA Replication. Virology, 2002, 302, 83-94.	2.4	82
31	Expression and Stability of Arabidopsis CDC6 Are Associated with Endoreplication. Plant Cell, 2001, 13, 2671-2686.	6.6	137
32	Expression and Stability of Arabidopsis CDC6 Are Associated with Endoreplication. Plant Cell, 2001, 13, 2671-2686.	6.6	81
33	Initiation of DNA replication in a eukaryotic rolling-circle replicon: identification of multiple DNA-protein complexes at the geminivirus origin 1 1Edited by I. B. Holland. Journal of Molecular Biology 1999, 299, 639, 652	4.2	52