
Jose F Barrenechea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734269/publications.pdf Version: 2024-02-01

LOSE F RADDENECHEA

#	Article	IF	CITATIONS
1	Carbon isotopes of graphite: Implications on fluid history. Geoscience Frontiers, 2012, 3, 197-207.	8.4	84
2	Deposition of highly crystalline graphite from moderate-temperature fluids. Geology, 2009, 37, 275-278.	4.4	75
3	Vein graphite deposits: geological settings, origin, and economic significance. Mineralium Deposita, 2014, 49, 261-277.	4.1	72
4	Microstructure and mineralogy of lightweight aggregates manufactured from mining and industrial wastes. Construction and Building Materials, 2011, 25, 3591-3602.	7.2	60
5	Sandstone Petrography of Continental Depositional Sequences of an Intraplate Rift Basin: Western Cameros Basin (North Spain). Journal of Sedimentary Research, 2003, 73, 309-327.	1.6	59
6	Microstructure and mineralogy of lightweight aggregates produced from washing aggregate sludge, fly ash and used motor oil. Cement and Concrete Composites, 2010, 32, 694-707.	10.7	58
7	Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data. Contributions To Mineralogy and Petrology, 2009, 158, 37-51.	3.1	45
8	The Late Palaeozoic-Early Mesozoic from the Catalan Pyrenees (Spain): 60Myr of environmental evolution in the frame of the western peri-Tethyan palaeogeography. Earth-Science Reviews, 2015, 150, 679-708.	9.1	44
9	The graphite deposit at Borrowdale (UK): A catastrophic mineralizing event associated with Ordovician magmatism. Geochimica Et Cosmochimica Acta, 2010, 74, 2429-2449.	3.9	43
10	New lithostratigraphy for the Cantabrian Mountains: A common tectono-stratigraphic evolution for the onset of the Alpine cycle in the W Pyrenean realm, N Spain. Earth-Science Reviews, 2019, 188, 249-271.	9.1	35
11	Clay mineral variations associated with diagenesis and low-grade metamorphism of Early Cretaceous sediments in the Cameros Basin, Spain. Clay Minerals, 1995, 30, 119-133.	0.6	33
12	Chlorite, Corrensite, and Chlorite-Mica in Late Jurassic Fluvio-Lacustrine Sediments of the Cameros Basin of Northeastern Spain. Clays and Clay Minerals, 2000, 48, 256-265.	1.3	33
13	Comparative study of the transition between very low-grade and low-grade metamorphism in siliciclastic and carbonate sediments: Early Cretaceous, Cameros Basin (northern Spain). Clay Minerals, 1995, 30, 407-419.	0.6	31
14	Paleoecological and paleoenvironmental changes during the continental Middle–Late Permian transition at the SE Iberian Ranges, Spain. Global and Planetary Change, 2012, 94-95, 46-61.	3.5	31
15	Sedimentary evolution of the continental Early–Middle Triassic Cañizar Formation (Central Spain): Implications for life recovery after the Permian–Triassic crisis. Sedimentary Geology, 2012, 249-250, 26-44.	2.1	31
16	Constraining the Permian/Triassic transition in continental environments: Stratigraphic and paleontological record from the Catalan Pyrenees (NE Iberian Peninsula). Palaeogeography, Palaeoecology, 2016, 445, 18-37.	2.3	31
17	New ichnites from the Middle Triassic of the Iberian Ranges (Spain): paleoenvironmental and paleogeographical implications. Historical Biology, 2010, 22, 40-56.	1.4	28
18	Palaeoenvironmental significance of Late Permian palaeosols in the Southâ€Eastern Iberian Ranges, Spain. Sedimentology, 2008, 55, 1849-1873.	3.1	27

#	Article	IF	CITATIONS
19	Palaeogeographical significance of clay mineral assemblages in the Permian and Triassic sediments of the SE Iberian Ranges, eastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 136, 309-330.	2.3	26
20	Late Permian continental sediments in the SE Iberian Ranges, eastern Spain: Petrological and mineralogical characteristics and palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 229, 24-39.	2.3	26
21	Influence of grinding on graphite crystallinity from experimental and natural data: implications for graphite thermometry and sample preparation. Mineralogical Magazine, 2006, 70, 697-707.	1.4	26
22	The beginning of the Buntsandstein cycle (Early–Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications. Sedimentary Geology, 2013, 296, 86-102.	2.1	26
23	Climate changes during the Early–Middle Triassic transition in the E. Iberian plate and their palaeogeographic significance in the western Tethys continental domain. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 671-689.	2.3	25
24	Formation of Nontronite from Oxidative Dissolution of Pyrite Disseminated in Precambrian Felsic Metavolcanics of the Southern Iberian Massif (spain). Clays and Clay Minerals, 2004, 52, 106-114.	1.3	24
25	Sedimentology, clay mineralogy and palaeosols of the Mid-Carnian Pluvial Episode in eastern Spain: insights into humidity and sea-level variations. Journal of the Geological Society, 2018, 175, 993-1003.	2.1	24
26	Significance of graphite occurrences in the Aracena Metamorphic Belt, Iberian Massif. Geological Magazine, 2004, 141, 687-697.	1.5	23
27	Graphite geothermometry in low and high temperature regimes: two case studies. Geological Magazine, 1993, 130, 501-511.	1.5	20
28	Syn-tectonic sedimentary evolution of the continental late Palaeozoic-early Mesozoic Erill Castell-Estac Basin and its significance in the development of the central Pyrenees Basin. Sedimentary Geology, 2018, 374, 134-157.	2.1	20
29	Graphite occurrences in the low-pressure/high-temperature metamorphic belt of the Sierra de Aracena (southern Iberian Massif). Mineralogical Magazine, 2000, 64, 801-814.	1.4	19
30	Clay diagenesis and low-grade metamorphism of Tithonian and Berriasian sediments in the Cameros Basin (Spain). Clay Minerals, 2001, 36, 325-333.	0.6	17
31	Mechanical graphite transport in fault zones and the formation of graphite veins. Mineralogical Magazine, 2005, 69, 463-470.	1.4	17
32	U-Pb Ages of Detrital Zircons from the Permo-Triassic Series of the Iberian Ranges: A Record of Variable Provenance during Rift Propagation. Journal of Geology, 2012, 120, 135-154.	1.4	17
33	Palaeoenvironmental implications of aluminium phosphate-sulphate minerals in Early–Middle Triassic continental sediments, SE Iberian Range (Spain). Sedimentary Geology, 2013, 289, 169-181.	2.1	14
34	Quantifying aluminium phosphate–sulphate minerals as markers of acidic conditions during the Permian–Triassic transition in the Iberian Ranges, E Spain. Chemical Geology, 2016, 429, 10-20.	3.3	14
35	Palaeoenvironmental reconstruction of the early Anisian from sedimentology and plant remains in the SE Iberian Range (E Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414, 352-369.	2.3	13
36	Late Permian plant remains in the SE Iberian Ranges, Spain: Biodiversity and palaeovegetational significance. Comptes Rendus - Palevol, 2007, 6, 403-411.	0.2	12

#	Article	IF	CITATIONS
37	New Upper Carboniferous palynofloras from Southern Pyrenees (NE Spain): Implications for palynological zonation of Western Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516, 307-321.	2.3	12
38	Transition between Variscan and Alpine cycles in the Pyrenean-Cantabrian Mountains (N Spain): Geodynamic evolution of near-equator European Permian basins. Global and Planetary Change, 2021, 207, 103677.	3.5	12
39	Relation between graphitization of organic matter and clay mineralogy, Silurian black shales in Central Spain. Mineralogical Magazine, 1992, 56, 477-485.	1.4	10
40	Clay minerals as provenance indicators in continental lacustrine sequences: the Leza Formation, early Cretaceous, Cameros Basin, northern Spain. Clay Minerals, 2005, 40, 79-92.	0.6	8
41	Could acidity be the reason behind the Early Triassic biotic crisis on land?. Chemical Geology, 2019, 515, 77-86.	3.3	8
42	Sources of Sr and S In Aluminum-Phosphate-Sulfate Minerals In Early-Middle Triassic Sandstones (Iberian Ranges, Spain) and Paleoenvironmental Implications for the West Tethys. Journal of Sedimentary Research, 2013, 83, 406-426.	1.6	7
43	Early Permian during the Variscan orogen collapse in the equatorial realm: insights from the Cantabrian Mountains (N Iberia) into climatic and environmental changes. International Journal of Earth Sciences, 2021, 110, 1355-1387.	1.8	7
44	Key factors controlling massive graphite deposition in volcanic settings: an example of a self-organized critical system. Journal of the Geological Society, 2012, 169, 269-277.	2.1	6
45	Palynostratigraphy of the Middle Triassic (Anisian) Eslida Formation, SE Iberian Ranges, Spain. Palynology, 2018, 42, 149-157.	1.5	5
46	First report of a Middle-Upper Permian magmatism in the SE Iberian Ranges: characterisation and comparison with coeval magmatisms in the western Tethys. Journal of Iberian Geology, 2013, 38, .	1.3	4
47	Shallow burial dolomitisation of Middle–Upper Permian paleosols in an extensional tectonic context (SE Iberian Basin, Spain): Controls on temperature of precipitation and source of fluids. Sedimentary Geology, 2011, 237, 135-149.	2.1	3
48	Gossans, Slates, and the Red and Black Hamlets of Segovia (Spain): Interrelated Geological and Architectural Features. Geoheritage, 2018, 10, 109-121.	2.8	3
49	Geochemical markers of paleoenvironments, weathering, and provenance in Permian–Triassic terrestrial sediments. Journal of Sedimentary Research, 2020, 90, 906-920.	1.6	3
50	State of a Bentonite Barrier after 8 Years of Heating and Hydration in the Laboratory. Materials Research Society Symposia Proceedings, 2006, 985, 1.	0.1	2
51	Gradual changes in the Olenekian-Anisian continental record and biotic implications in the Central-Eastern Pyrenean basin, NE Spain. Global and Planetary Change, 2020, 192, 103252.	3.5	2
52	Impact of Permian mass extinctions on continental invertebrate infauna. Terra Nova, 2021, 33, 455-464.	2.1	2
53	Permian and Triassic paleosols in the fluvial-lacustrine record of the central Pyrenees Basin, Spain: A stratigraphic tool for interpreting syn-tectonic sedimentary evolution and paleoclimate. Newsletters on Stratigraphy, 2021, 54, 377-404.	1.2	2
54	State of the art of Triassic palynostratigraphical knowledge of the Cantabrian Mountains (N Spain). Comptes Rendus - Geoscience, 2020, 352, 475-493.	1.2	1

#	Article	IF	CITATIONS
55	Comment on a€œintegrated multi-stratigraphic study of the Coll de Terrers late Permiana€ Early Triassic continental succession from the Catalan Pyrenees (NE Iberian Peninsula): A geologic reference record for equatorial Pangaea―by Eudald Mujal, Josep Fortuny, Jordi Pérez-Cano, Jaume DinarÃ"s-Turell, Jordi Ib¡ñez-Insa, Oriol Oms, Isabel Vila, Arnau Bolet, Pere Anadón. Global and Planetary Change 159 (2017)	3.5	0
56	Early Triassic Fluvial–Aeolian Interaction in the Catalan Ranges (Northeastern Spain) and Its Palaeogeographical Significance for the Western Tethys. Springer Geology, 2014, , 1181-1184.	0.3	0