
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7342158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant Response and Calcium-Dependent Protein Kinases Involvement in Canola (Brassica napus) Tj ETQq1 1	0.784314 1.3	⊧ŗgΒT /Ονeι
2	Transgenic Medicago truncatula Plants That Accumulate Proline Display Enhanced Tolerance to Cadmium Stress. Frontiers in Plant Science, 2022, 13, 829069.	1.7	8
3	Potassium content diminishes in infected cells of <i>Medicago truncatula</i> nodules due to the mislocation of channels MtAKT1 and MtSKOR/GORK. Journal of Experimental Botany, 2021, 72, 1336-1348.	2.4	14
4	Local adaptation optimizes photoprotection strategies in a Neotropical legume tree under drought stress. Tree Physiology, 2021, 41, 1641-1657.	1.4	5
5	Cadmium-Tolerant and -Sensitive Cultivars Identified by Screening of Medicago truncatula Germplasm Display Contrasting Responses to Cadmium Stress. Frontiers in Plant Science, 2021, 12, 595001.	1.7	8
6	Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots. Frontiers in Plant Science, 2021, 12, 644218.	1.7	23
7	Phylogenetic Analyses of Rhizobia Isolated from Nodules of Lupinus angustifolius in Northern Tunisia Reveal Devosia sp. as a New Microsymbiont of Lupin Species. Agronomy, 2021, 11, 1510.	1.3	8
8	Nodulated White Lupin Plants Growing in Contaminated Soils Accumulate Unusually High Mercury Concentrations in Their Nodules, Roots and Especially Cluster Roots. Horticulturae, 2021, 7, 302.	1.2	13
9	Genome-Wide Association Study Reveals Complex Genetic Architecture of Cadmium and Mercury Accumulation and Tolerance Traits in Medicago truncatula. Frontiers in Plant Science, 2021, 12, 806949.	1.7	10
10	Adaptive Mechanisms Make Lupin a Choice Crop for Acidic Soils Affected by Aluminum Toxicity. Frontiers in Plant Science, 2021, 12, 810692.	1.7	10
11	Mercury-Tolerant Ensifer medicae Strains Display High Mercuric Reductase Activity and a Protective Effect on Nitrogen Fixation in Medicago truncatula Nodules Under Mercury Stress. Frontiers in Plant Science, 2020, 11, 560768.	1.7	15
12	Arbuscular mycorrhizal fungus and rhizobacteria affect the physiology and performance ofSulla coronariaplants subjected to salt stress by mitigation of ionic imbalance. Journal of Plant Nutrition and Soil Science, 2019, 182, 451-462.	1.1	13
13	Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. South African Journal of Botany, 2019, 124, 573-582.	1.2	55
14	Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Applied Soil Ecology, 2019, 133, 104-113.	2.1	56
15	A nodule endophytic <i>Bacillus megaterium</i> strain isolated from <i>Medicago polymorpha</i> enhances growth, promotes nodulation by <i>Ensifer medicae</i> and alleviates salt stress in alfalfa plants. Annals of Applied Biology, 2018, 172, 295-308.	1.3	72
16	Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. Journal of Plant Nutrition and Soil Science, 2018, 181, 694-703.	1.1	64
17	Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Brassica juncea: Implications for Microbe-Assisted Phytoremediation. Journal of Microbiology and Biotechnology, 2018, 28, 1156-1167.	0.9	59
18	Rhizospheric microbial community of Caesalpinia spinosa (Mol.) Kuntze in conserved and deforested zones of the Atiquipa fog forest in Peru. Applied Soil Ecology, 2017, 114, 132-141.	2.1	10

#	Article	IF	CITATIONS
19	Editorial: Protein Crops: Food and Feed for the Future. Frontiers in Plant Science, 2017, 8, 105.	1.7	40
20	The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle?. Frontiers in Plant Science, 2017, 8, 2229.	1.7	119
21	Rhizobial diversity, symbiotic effectiveness and structure of nodules of Vachellia macracantha. Soil Biology and Biochemistry, 2016, 96, 39-54.	4.2	22
22	The future of lupin as a protein crop in Europe. Frontiers in Plant Science, 2015, 6, 705.	1.7	203
23	Genetic basis for denitrification in Ensifer meliloti. BMC Microbiology, 2014, 14, 142.	1.3	33
24	Flavodoxin overexpression confers tolerance to oxidative stress in beneficial soil bacteria and improves survival in the presence of the herbicides paraquat and atrazine. Journal of Applied Microbiology, 2013, 115, 236-246.	1.4	22
25	Rapid screening of Medicago truncatula germplasm for mercury tolerance at the seedling stage. Environmental and Experimental Botany, 2013, 91, 90-96.	2.0	13
26	Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biology, 2013, 15, 415-421.	1.8	62
27	Alfalfa nodules elicited by a flavodoxin-overexpressing Ensifer meliloti strain display nitrogen-fixing activity with enhanced tolerance to salinity stress. Planta, 2012, 236, 1687-1700.	1.6	22
28	Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and) Tj ETQq0	0 0 rgBT / 2.1	Overlock 10 T
29	Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agronomy for Sustainable Development, 2012, 32, 65-91.	2.2	83
30	Spatial distribution and physiology of biological soil crusts from semi-arid central Spain are related to soil chemistry and shrub cover. Soil Biology and Biochemistry, 2011, 43, 1894-1901.	4.2	58
31	Forest Restoration in a Fog Oasis: Evidence Indicates Need for Cultural Awareness in Constructing the Reference. PLoS ONE, 2011, 6, e23004.	1.1	20
32	Flavodoxin overexpression reduces cadmium-induced damage in alfalfa root nodules. Plant and Soil, 2010, 326, 109-121.	1.8	45
33	Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnology Journal, 2010, 8, 954-965.	4.1	69
34	Effect of fire severity and site slope on diversity and structure of the ectomycorrhizal fungal community associated with post-fire regenerated Pinus pinaster Ait. seedlings. Forest Ecology and Management, 2010, 260, 361-369.	1.4	45
35	Overexpression of Flavodoxin in Bacteroids Induces Changes in Antioxidant Metabolism Leading to Delayed Senescence and Starch Accumulation in Alfalfa Root Nodules. Plant Physiology, 2009, 149, 1166-1178.	2.3	54
36	Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of peanut (<i>Arachis hypogaea</i> L <i>.</i>) grown in Moroccan soils. Journal of Basic Microbiology, 2009, 49, 415-425.	1.8	16

#	Article	IF	CITATIONS
37	Diversity of Rhizobial Bacteria Isolated from Nodules of the Gypsophyte Ononis tridentata L. Growing in Spanish Soils. Microbial Ecology, 2008, 56, 223-233.	1.4	34
38	A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules. Planta, 2008, 227, 769-779.	1.6	28
39	A cytokinin receptor homologue is induced during root nodule organogenesis and senescence in Lupinus albus L Plant Physiology and Biochemistry, 2008, 46, 219-225.	2.8	16
40	Genetic diversity and symbiotic efficiency of rhizobial isolates obtained from nodules of Arachis hypogaea in northwestern Morocco. Soil Biology and Biochemistry, 2008, 40, 2911-2914.	4.2	32
41	Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiology, 2008, 28, 1693-1701.	1.4	67
42	Multiple roles for cytokinin receptors and cross-talk of signaling pathways. Plant Signaling and Behavior, 2008, 3, 791-794.	1.2	4
43	Characterization of Bradyrhizobia Isolated from Root Nodules of Cytisus triflorus in the Rif Occidental of Morocco. Current Plant Science and Biotechnology in Agriculture, 2008, , 155-155.	0.0	1
44	Overexpression of Flavodoxin in Alfalfa Nodules Leads to Delayed Senescence and High Starch Accumulation. Current Plant Science and Biotechnology in Agriculture, 2008, , 205-206.	0.0	0
45	Conformation of cytoskeletal elements during the division of infected Lupinus albus L. nodule cells. Journal of Experimental Botany, 2007, 58, 2225-2236.	2.4	27
46	Nuclear DNA Endoreduplication and Expression of the Mitotic Inhibitor Ccs52 Associated to Determinate and Lupinoid Nodule Organogenesis. Molecular Plant-Microbe Interactions, 2006, 19, 173-180.	1.4	32
47	Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant, Cell and Environment, 2006, 29, 1913-1923.	2.8	127
48	Aldehyde Oxidase (AO) in the Root Nodules of Lupinus albus and Medicago truncatula: Identification of AO in Meristematic and Infection Zones. Molecular Plant-Microbe Interactions, 2005, 18, 405-413.	1.4	34
49	Colonisation of Pinus halepensis roots by Pseudomonas fluorescens and interaction with the ectomycorrhizal fungus Suillus granulatus. FEMS Microbiology Ecology, 2005, 51, 303-311.	1.3	36
50	Differential organ-specific response to salt stress and water deficit in nodulated bean (Phaseolus) Tj ETQq0 0 0	rgBT /Over 2.8	loc႘္ 10 Tf 50
51	An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus). New Phytologist, 2004, 163, 371-380.	3.5	64
52	Increased tolerance to thermal inactivation of oxygen evolution in spinach Photosystem II membranes by substitution of the extrinsic 33-kDa protein by its homologue from a thermophilic cyanobacterium. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1554, 29-35.	0.5	14
53	Photoinhibition of Photosystem II from Higher Plants. Journal of Biological Chemistry, 1996, 271, 27408-27415.	1.6	121
54	Induced New Mutation of D1 Serine-268 in Soybean Photosynthetic Cell Cultures Produced Atrazine Resistance, Increased Stability of S2QB - and S3QB - States, and Increased Sensitivity to Light Stress. Plant Physiology, 1996, 112, 1499-1508.	2.3	38

#	Article	IF	CITATIONS
55	Kinetics and thermodynamics of the binding of riboflavin, riboflavin 5′-phosphate and riboflavin 3′,5′-bisphosphate by apoflavodoxins. Biochemical Journal, 1996, 313, 855-861.	1.7	35
56	Effects of bean and wheat αâ€amylase inhibitors on αâ€amylase activity and growth of stored product insect pests*. Entomologia Experimentalis Et Applicata, 1995, 75, 237-244.	0.7	25
57	Degradation of transport-competent destabilized phaseolin with a signal for retention in the endoplasmic reticulum occurs in the vacuole. Planta, 1995, 196, 586-96.	1.6	56
58	Pigment Content of D1-D2-Cytochrome b559 Reaction Center Preparations after Removal of CP47 Contamination: An Immunological Study. Biochemistry, 1995, 34, 15214-15218.	1.2	11
59	Transgenic Pea Seeds Expressing the α-Amylase Inhibitor of the Common Bean are Resistant to Bruchid Beetles. Nature Biotechnology, 1994, 12, 793-796.	9.4	221
60	LASER FLASH-INDUCED PHOTOREDUCTION OF PHOTOSYNTHETIC FERREDOXINS AND FLAVODOXIN BY 5-DEAZARIBOFLAVIN AND BY A. Photochemistry and Photobiology, 1994, 60, 231-236.	1.3	10
61	Interaction of flavodoxin with cyanobacterial thylakoids. Photosynthesis Research, 1993, 38, 35-39.	1.6	4
62	Activation of Bean (Phaseolus vulgaris) [alpha]-Amylase Inhibitor Requires Proteolytic Processing of the Proprotein. Plant Physiology, 1993, 101, 1341-1348.	2.3	81
63	Effects of phosphate on the binding of FMN and riboflavin by apoflavodoxin from <i>Desulfovibrio vulgaris</i> (Hildenborough). Biochemical Society Transactions, 1992, 20, 83S-83S.	1.6	2
64	Complex formation between ferredoxin and ferredoxin-NADP+ reductase from Anabaena PCC 7119: Cross-linking studies. Archives of Biochemistry and Biophysics, 1992, 294, 367-372.	1.4	22
65	Photochemical regeneration of NADPH using the enzyme ferredoxin-NADP+ reductase. Enzyme and Microbial Technology, 1992, 14, 8-12.	1.6	10
66	Characterization of the cross-linked complex formed between ferredoxin-NADP+ reductase and flavodoxin from Anabaena PCC 7119. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1059, 149-156.	0.5	18
67	Laser flash photolysis studies of the kinetics of reduction of ferredoxins and ferredoxin-NADP+ reductases from Anabaena PCC 7119 and spinach: Electrostatic effects on intracomplex electron transfer. Archives of Biochemistry and Biophysics, 1991, 287, 351-358.	1.4	64
68	Oxidation-reduction potentials of ferredoxin-NADP+ reductase and flavodoxin from Anabaena PCC 7119 and their electrostatic and covalent complexes. FEBS Journal, 1991, 202, 1065-1071.	0.2	64
69	Purification of Ferredoxin-NADP+Reductase, Flavodoxin and Ferredoxin from a Single Batch of the CyanobacteriumAnabaenaPCC 7119. Preparative Biochemistry and Biotechnology, 1991, 21, 191-204.	0.4	46
70	Comparison of the kinetics of reduction and intramolecular electron transfer in electrostatic and covalent complexes of ferredoxin-NADP+ reductase and flavodoxin from Anabaena PCC 7119. Archives of Biochemistry and Biophysics, 1990, 281, 76-83.	1.4	35
71	Preparation and properties of a cross-linked complex between ferredoxin-NADP+ reductase and flavodoxin. FEBS Journal, 1989, 183, 539-544.	0.2	17
72	Flavonoid Accumulation Varies in Medicago truncatula in Response to Mercury Stress. Frontiers in Plant Science. 0. 13	1.7	5