Anna Klinkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7341992/publications.pdf Version: 2024-02-01

ANNA KUNKOVA

#	Article	IF	CITATIONS
1	Mechanism of ammonia oxidation to dinitrogen, nitrite, and nitrate on βâ€Ni(OH) ₂ from firstâ€principles simulations. Electrochemical Science Advances, 2022, 2, 2100142.	2.8	21
2	Interparticle gap geometry effects on chiroptical properties of plasmonic nanoparticle assemblies. Nanotechnology, 2022, 33, 125203.	2.6	1
3	Pathways of ammonia electrooxidation on nickel hydroxide anodes and an alternative route towards recycled fertilizers. Green Chemistry, 2022, 24, 1578-1589.	9.0	28
4	Hands-on Electrochemical Reduction of CO ₂ : Understanding Electrochemical Principles through Active Learning. Journal of Chemical Education, 2022, 99, 1036-1043.	2.3	10
5	Designing Hot Spots in Plasmonic Assemblies through the Shape and Arrangement of Constituents. , 2022, , 301-350.		0
6	Low-Frequency Oscillations in Optical Measurements of Metal-Nanoparticle Vibrations. Nano Letters, 2022, 22, 5365-5371.	9.1	5
7	Numerical investigation of delamination onset and propagation in catalyst layers of PEM fuel cells under hygrothermal cycles. International Journal of Hydrogen Energy, 2021, 46, 11071-11083.	7.1	12
8	Multiphoton induced photoluminescence during time-resolved laser-induced incandescence experiments on silver and gold nanoparticles. Journal of Applied Physics, 2021, 129, .	2.5	8
9	Translating Tactics from Direct CO ₂ Electroreduction to Electroorganic Coupling Reactions with CO ₂ . Advanced Energy and Sustainability Research, 2021, 2, 2100001.	5.8	13
10	Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nature Catalysis, 2021, 4, 479-487.	34.4	68
11	Relative activity of metal cathodes towards electroorganic coupling of CO2 with benzylic halides. Electrochimica Acta, 2021, 387, 138528.	5.2	10
12	Inductive effects in cobalt-doped nickel hydroxide electronic structure facilitating urea electrooxidation. Chemosphere, 2021, 279, 130550.	8.2	30
13	Shape control in seed-mediated synthesis of non-elongated Cu nanoparticles and their optical properties. Nanoscale, 2021, 13, 12505-12512.	5.6	7
14	Energy Transport in CsPbBr ₃ Perovskite Nanocrystal Solids. ACS Photonics, 2020, 7, 154-164.	6.6	19
15	Sustainable at both ends: electrochemical CO ₂ utilization paired with electrochemical treatment of nitrogenous waste. Green Chemistry, 2020, 22, 4456-4462.	9.0	55
16	Synthesis of Dimeric Molecules via Ag-Catalyzed Electrochemical Homocoupling of Organic Bromides Paired with Electrooxidation of Urea. Journal of the Electrochemical Society, 2020, 167, 155521.	2.9	6
17	On the Performance and Structural Stability of Cathodic Electrocatalysts with Complex Nanoscale Morphology. ECS Meeting Abstracts, 2020, MA2020-01, 2709-2709.	0.0	0
18	Coupling of Various Aqueous Anodic Reactions with Direct and Indirect Electroreduction of CO2 in Organic Media. ECS Meeting Abstracts, 2020, MA2020-01, 2641-2641.	0.0	0

Anna Klinkova

#	Article	IF	CITATIONS
19	Pd–CNT–SiO ₂ nanoskein: composite structure design for formic acid dehydrogenation. Chemical Communications, 2019, 55, 10733-10736.	4.1	14
20	Reductive and Coordinative Effects of Hydrazine in Structural Transformations of Copper Hydroxide Nanoparticles. Nanomaterials, 2019, 9, 1445.	4.1	14
21	Trapping a Photoelectron behind a Repulsive Coulomb Barrier in Solution. Journal of Physical Chemistry Letters, 2019, 10, 5742-5747.	4.6	2
22	An aligned octahedral core in a nanocage: synthesis, plasmonic, and catalytic properties. Nanoscale, 2019, 11, 3138-3144.	5.6	12
23	Cu(<scp>ii</scp>)-nanoparticle-derived structures under CO ₂ reduction conditions: a matter of shape. Physical Chemistry Chemical Physics, 2019, 21, 5894-5897.	2.8	7
24	Electrochemical CO ₂ Fixation to α-Methylbenzyl Bromide in Divided Cells with Nonsacrificial Anodes and Aqueous Anolytes. ACS Sustainable Chemistry and Engineering, 2019, 7, 19631-19639.	6.7	33
25	INVESTIGATING NON-INCANDESCENCE EMISSION DURING LASER INDUCED INCANDESCENCE EXPERIMENTS ON AEROSOLIZED PLASMONIC NANOPARTICLES. , 2019, , .		0
26	Selfâ€Assembly and Surface Patterning of Polyferrocenylsilaneâ€Functionalized Gold Nanoparticles. Macromolecular Rapid Communications, 2018, 39, 1700554.	3.9	16
27	Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. Journal of Materials Chemistry A, 2017, 5, 11582-11585.	10.3	58
28	Linear assembly of patchy and non-patchy nanoparticles. Faraday Discussions, 2016, 191, 189-204.	3.2	26
29	Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance. RSC Advances, 2016, 6, 47907-47911.	3.6	7
30	Large-Scale Synthesis of Metal Nanocrystals in Aqueous Suspensions. Chemistry of Materials, 2016, 28, 3196-3202.	6.7	37
31	Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382-386.	27.8	1,429
32	Surface patterning of nanoparticles with polymer patches. Nature, 2016, 538, 79-83.	27.8	257
33	Colloidal cholesteric liquid crystal in spherical confinement. Nature Communications, 2016, 7, 12520.	12.8	157
34	Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. ACS Catalysis, 2016, 6, 8115-8120.	11.2	277
35	Shape-Dependent Interactions of Palladium Nanocrystals with Hydrogen. Small, 2016, 12, 2450-2458.	10.0	34
36	Domino [4 + 1]-annulation of α,β-unsaturated δ-amino esters with Rh(<scp>ii</scp>)–carbenoids – a new approach towards multi-functionalized N-aryl pyrrolidines. Organic and Biomolecular Chemistry, 2015, 13, 2640-2651.	2.8	22

Anna Klinkova

#	Article	IF	CITATIONS
37	Circular Dichroism of Chiral Nematic Films of Cellulose Nanocrystals Loaded with Plasmonic Nanoparticles. ACS Nano, 2015, 9, 10377-10385.	14.6	111
38	Self-assembled plasmonic nanostructures. Chemical Society Reviews, 2014, 43, 3976.	38.1	276
39	Structural and Optical Properties of Self-Assembled Chains of Plasmonic Nanocubes. Nano Letters, 2014, 14, 6314-6321.	9.1	92
40	Shaken, and stirred: oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials. Lab on A Chip, 2014, 14, 2309-2318.	6.0	34
41	Structural Transitions in Nanoparticle Assemblies Governed by Competing Nanoscale Forces. Journal of the American Chemical Society, 2013, 135, 10262-10265.	13.7	100
42	Colloidal analogs of molecular chain stoppers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18775-18779.	7.1	67
43	Suppression of the Plasmon Resonance in Au/CdS Colloidal Nanocomposites. Nano Letters, 2011, 11, 1792-1799.	9.1	173
44	The Role of Hole Localization in Sacrificial Hydrogen Production by Semiconductor–Metal Heterostructured Nanocrystals. Nano Letters, 2011, 11, 2919-2926.	9.1	187
45	Heteroepitaxial Growth of Colloidal Nanocrystals onto Substrate Films via Hot-Injection Routes. ACS Nano, 2011, 5, 4953-4964.	14.6	32