Paulo Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7341703/publications.pdf

Version: 2024-02-01

141 papers

6,633 citations

71102 41 h-index 71685 76 g-index

150 all docs

150 docs citations

150 times ranked

5765 citing authors

#	Article	IF	CITATIONS
1	A review of prescribed burning effectiveness in fire hazard reduction. International Journal of Wildland Fire, 2003, 12, 117.	2.4	510
2	Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling, 2011, 222, 903-924.	2.5	318
3	Prescribed burning in southern Europe: developing fire management in a dynamic landscape. Frontiers in Ecology and the Environment, $2013,11,$ e4.	4.0	268
4	Wildfire management in Mediterranean-type regions: paradigm change needed. Environmental Research Letters, 2020, 15, 011001.	5.2	267
5	Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire, 2018, 1, 9.	2.8	254
6	Fireâ€related traits for plant species of the Mediterranean Basin. Ecology, 2009, 90, 1420-1420.	3.2	217
7	The fire ecology and management of maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 2007, 241, 1-13.	3.2	212
8	Fire resistance of European pines. Forest Ecology and Management, 2008, 256, 246-255.	3.2	195
9	Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landscape and Urban Planning, 2013, 110, 175-182.	7.5	187
10	Climate change impact on future wildfire danger and activity in southern Europe: a review. Annals of Forest Science, 2020, 77, 1.	2.0	170
11	Fire spread prediction in shrub fuels in Portugal. Forest Ecology and Management, 2001, 144, 67-74.	3.2	148
12	Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Annals of Forest Science, 2009, 66, 415-415.	2.0	132
13	A generic, empirical-based model for predicting rate of fire spread in shrublands. International Journal of Wildland Fire, 2015, 24, 443.	2.4	123
14	Post-fire tree mortality in mixed forests of central Portugal. Forest Ecology and Management, 2010, 260, 1184-1192.	3.2	122
15	Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytologist, 2012, 194, 606-609.	7.3	119
16	The dynamics and drivers of fuel and fire in the Portuguese public forest. Journal of Environmental Management, 2014, 146, 373-382.	7.8	103
17	Bottom-Up Variables Govern Large-Fire Size in Portugal. Ecosystems, 2016, 19, 1362-1375.	3.4	85
18	Shrubland fire behaviour modelling with microplot data. Canadian Journal of Forest Research, 2000, 30, 889-899.	1.7	83

#	Article	IF	Citations
19	Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission. International Journal of Wildland Fire, 2016, 25, 619.	2.4	83
20	Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environmental Science and Policy, 2018, 81, 104-107.	4.9	81
21	Fire behaviour and severity in a maritime pine stand under differing fuel conditions. Annals of Forest Science, 2004, 61, 537-544.	2.0	80
22	Empirical Support for the Use of Prescribed Burning as a Fuel Treatment. Current Forestry Reports, 2015, 1, 118-127.	7.4	80
23	Empirical modelling of surface fire behaviour in maritime pine stands. International Journal of Wildland Fire, 2009, 18, 698.	2.4	80
24	The role of fire in UK peatland and moorland management: the need for informed, unbiased debate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150342.	4.0	78
25	Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2141-2157.	3.0	77
26	Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto Protocol. Forest Ecology and Management, 2007, 251, 164-173.	3.2	74
27	Global patterns in fire leverage: the response of annual area burnt to previous fire. International Journal of Wildland Fire, 2015, 24, 297.	2.4	72
28	Analysis of the prescribed burning practice in the pine forest of northwestern Portugal. Journal of Environmental Management, 2004, 70, 15-26.	7.8	71
29	Changes in wildfire severity from maritime pine woodland to contiguous forest types in the mountains of northwestern Portugal. Forest Ecology and Management, 2010, 260, 883-892.	3.2	68
30	Development of fuel models for fire behaviour prediction in maritime pine (Pinus pinaster Ait.) stands. International Journal of Wildland Fire, 2008, 17, 194.	2.4	66
31	Forest Fires in Mediterranean Countries: CO2 Emissions and Mitigation Possibilities Through Prescribed Burning. Environmental Management, 2011, 48, 558-567.	2.7	63
32	Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. Forest Ecology and Management, 2014, 323, 47-56.	3.2	63
33	The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. European Journal of Forest Research, 2016, 135, 253-262.	2.5	62
34	Analysing eucalypt expansion in Portugal as a fire-regime modifier. Science of the Total Environment, 2019, 666, 79-88.	8.0	62
35	Farmland abandonment decreases the fire regulation capacity and the fire protection ecosystem service in mountain landscapes. Ecosystem Services, 2019, 36, 100908.	5.4	60
36	Fuel age, weather and burn probability in Portugal. International Journal of Wildland Fire, 2012, 21, 380.	2.4	58

#	Article	IF	CITATIONS
37	Cohesive fire management within an uncertain environment: A review of risk handling and decision support systems. Forest Ecology and Management, 2015, 347, 1-17.	3.2	56
38	Cork Oak Vulnerability to Fire: The Role of Bark Harvesting, Tree Characteristics and Abiotic Factors. PLoS ONE, 2012, 7, e39810.	2.5	55
39	Development of a model system to predict wildfire behaviour in pine plantations. Australian Forestry, 2008, 71, 113-121.	0.9	49
40	Using fuel and weather variables to predict the sustainability of surface fire spread in maritime pine stands. Canadian Journal of Forest Research, 2008, 38, 190-201.	1.7	47
41	Hot fire, cool soil. Geophysical Research Letters, 2013, 40, 1534-1539.	4.0	47
42	Post-fire response variability in Mediterranean Basin tree species in Portugal. International Journal of Wildland Fire, 2013, 22, 919.	2.4	42
43	A fire behaviour-based fire danger classification for maritime pine stands: Comparison of two approaches. Forest Ecology and Management, 2006, 234, S54.	3.2	41
44	Wildfire patterns and landscape changes in Mediterranean oak woodlands. Science of the Total Environment, 2015, 536, 338-352.	8.0	40
45	Forest Fires in Portugal: Dynamics, Causes and Policies. World Forests, 2014, , 97-115.	0.1	39
46	Implications of future bioclimatic shifts on Portuguese forests. Regional Environmental Change, 2017, 17, 117-127.	2.9	38
47	Improving silvicultural practices for Mediterranean forests through fire behaviour modelling using LiDAR-derived canopy fuel characteristics. International Journal of Wildland Fire, 2019, 28, 823.	2.4	38
48	Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Global Ecology and Biogeography, 2019, 28, 961-975.	5.8	37
49	Examining fuel treatment longevity through experimental and simulated surface fire behaviour: a maritime pine case study. Canadian Journal of Forest Research, 2009, 39, 2529-2535.	1.7	36
50	A laboratory-based quantification of the effect of live fuel moisture content on fire spread rate. International Journal of Wildland Fire, 2016, 25, 569.	2.4	34
51	Evaluating fire growth simulations using satellite active fire data. Remote Sensing of Environment, 2017, 190, 302-317.	11.0	34
52	Fuel modelling in terrestrial ecosystems: An overview in the context of the development of an object-orientated database for wild fire analysis. Ecological Modelling, 2009, 220, 2915-2926.	2.5	33
53	Deciphering the impact of uncertainty on the accuracy of large wildfire spread simulations. Science of the Total Environment, 2016, 569-570, 73-85.	8.0	33
54	Variation in the Canadian Fire Weather Index Thresholds for Increasingly Larger Fires in Portugal. Forests, 2019, 10, 838.	2.1	32

#	Article	IF	CITATIONS
55	A model of shrub biomass accumulation as a tool to support management of Portuguese forests. IForest, 2015, 8, 114-125.	1.4	31
56	Shrub fuel characteristics estimated from overstory variables in NW Spain pine stands. Forest Ecology and Management, 2012, 275, 130-141.	3.2	30
57	Effects of grazing on plant composition, conservation status and ecosystem services of Natura 2000 shrub-grassland habitat types. Biodiversity and Conservation, 2019, 28, 1205-1224.	2.6	30
58	Post-Fire Management of Serotinous Pine Forests. Managing Forest Ecosystems, 2012, , 121-150.	0.9	30
59	Fuel dynamics following fire hazard reduction treatments in blue gum (Eucalyptus globulus) plantations in Portugal. Forest Ecology and Management, 2017, 398, 185-195.	3.2	29
60	Fire spread predictions: Sweeping uncertainty under the rug. Science of the Total Environment, 2017, 592, 187-196.	8.0	29
61	Fire-severity mitigation by prescribed burning assessed from fire-treatment encounters in maritime pine stands. Canadian Journal of Forest Research, 2019, 49, 205-211.	1.7	29
62	Forest fires in Galicia (Spain): The outcome of unbalanced fire management. Journal of Forest Economics, 2008, 14, 155-157.	0.2	28
63	Scientific support to prescribed underburning in southern Europe: What do we know?. Science of the Total Environment, 2018, 630, 340-348.	8.0	27
64	PiroPinus: A spreadsheet application to guide prescribed burning operations in maritime pine forest. Computers and Electronics in Agriculture, 2012, 81, 58-61.	7.7	26
65	Probabilistic fire spread forecast as a management tool in an operational setting. SpringerPlus, 2016, 5, 1205.	1.2	26
66	Occurrence of native and exotic invasive trees in burned pine and eucalypt plantations: Implications for post-fire forest conversion. Ecological Engineering, 2013, 58, 296-302.	3.6	25
67	Understanding the Impact of Different Landscape-Level Fuel Management Strategies on Wildfire Hazard in Central Portugal. Forests, 2021, 12, 522.	2.1	25
68	Fine fuels consumption and CO2 emissions from surface fire experiments in maritime pine stands in northern Portugal. Forest Ecology and Management, 2013, 291, 344-356.	3.2	23
69	Using density management diagrams to assess crown fire potential in Pinus pinaster Ait. stands. Annals of Forest Science, 2014, 71, 473-484.	2.0	23
70	Post-fire plant diversity and abundance in pine and eucalypt stands in Portugal: Effects of biogeography, topography, forest type and post-fire management. Forest Ecology and Management, 2014, 334, 154-162.	3.2	21
71	Setting the Scene for Post-Fire Management. Managing Forest Ecosystems, 2012, , 1-19.	0.9	21
72	A New Method to Estimate Fuel Surface Area-to-Volume Ratio Using Water Immersion International Journal of Wildland Fire, 1998, 8, 121.	2.4	20

#	Article	IF	CITATIONS
73	The FIRE PARADOX project: Towards science-based fire management in Europe. Forest Ecology and Management, 2011, 261, 2177-2178.	3.2	20
74	Post-fire live residuals of maritime pine plantations in Portugal: Structure, burn severity, and fire recurrence. Forest Ecology and Management, 2015, 347, 170-179.	3.2	20
75	Coupling fire behaviour modelling and stand characteristics to assess and mitigate fire hazard in a maritime pine landscape in Portugal. European Journal of Forest Research, 2017, 136, 527-542.	2.5	20
76	Empirical Modeling of Fire Spread Rate in No-Wind and No-Slope Conditions. Forest Science, 2018, 64, 358-370.	1.0	20
77	Live Fuel Moisture Content: The â€~Pea Under the Mattress' of Fire Spread Rate Modeling?. Fire, 2018, 1, 43.	2.8	20
78	Survival of prescribed burning treatments to wildfire in Portugal. Forest Ecology and Management, 2021, 493, 119250.	3.2	20
79	Post-fire forest management in southern Europe: a COST action for gathering and disseminating scientific knowledge. IForest, 2010, 3, 5-7.	1.4	19
80	Fire Hazard and Flammability of European Forest Types. Managing Forest Ecosystems, 2012, , 79-92.	0.9	19
81	The role of holm oak edges in the control of disturbance and conservation of plant diversity in fire-prone landscapes. Forest Ecology and Management, 2013, 297, 37-48.	3.2	18
82	On the reactive nature of forest fire-related legislation in Portugal: A comment on Mour \tilde{A} £0 and Martinho (2016). Land Use Policy, 2017, 60, 12-15.	5.6	18
83	Short communication: On the effect of live fuel moisture content on fire-spread rate. Forest Systems, 2018, 26, eSC08.	0.3	18
84	Evidence for lack of a fuel effect on forest and shrubland fire rates of spread under elevated fire danger conditions: implications for modelling and management. International Journal of Wildland Fire, 2022, 31, 471-479.	2.4	17
85	Microclimate and Modeled Fire Behavior Differ Between Adjacent Forest Types in Northern Portugal. Forests, 2014, 5, 2490-2504.	2.1	16
86	Fuel-related fire-behaviour relationships for mixed live and dead fuels burned in the laboratory. Canadian Journal of Forest Research, 2017, 47, 883-889.	1.7	16
87	Regeneration of Native Forest Species in Mainland Portugal: Identifying Main Drivers. Forests, 2018, 9, 694.	2.1	16
88	Pre-fire aboveground biomass, estimated from LiDAR, spectral and field inventory data, as a major driver of burn severity in maritime pine (Pinus pinaster) ecosystems. Forest Ecosystems, 2022, 9, 100022.	3.1	15
89	Vegetation structure descriptors regulating the presence of wild rabbit in the National Park of Peneda-Ger�s, Portugal. European Journal of Wildlife Research, 2004, 50, 1-6.	1.4	14
90	(Wild)fire is not an ecosystem service. Frontiers in Ecology and the Environment, 2019, 17, 429-430.	4.0	14

#	Article	IF	Citations
91	Climate regulation ecosystem services and biodiversity conservation are enhanced differently by climate- and fire-smart landscape management. Environmental Research Letters, 2022, 17, 054014.	5.2	14
92	Evaluating the 10% wind speed rule of thumb for estimating a wildfire's forward rate of spread against an extensive independent set of observations. Environmental Modelling and Software, 2020, 133, 104818.	4.5	13
93	Fire from the Sky in the Anthropocene. Fire, 2021, 4, 13.	2.8	13
94	On the development of a regional climate change adaptation plan: Integrating model-assisted projections and stakeholders' perceptions. Science of the Total Environment, 2022, 805, 150320.	8.0	13
95	Evaluating the effect of prescribed burning on the reduction of wildfire extent in Portugal. Forest Ecology and Management, 2022, 519, 120302.	3.2	13
96	Survival to prescribed fire of plantation-grown Corsican black pine in northern Portugal. Annals of Forest Science, 2012, 69, 813-820.	2.0	12
97	The Canadian fire weather index system and wildfire activity in the Karst forest management area, Slovenia. European Journal of Forest Research, 2012, 131, 829-834.	2.5	12
98	An Empirical Model for the Effect of Wind on Fire Spread Rate. Fire, 2018, 1, 31.	2.8	12
99	Assessing the drivers and the recruitment potential of Eucalyptus globulus in the Iberian Peninsula. Forest Ecology and Management, 2020, 466, 118147.	3.2	12
100	Regional livestock grazing, human demography and fire incidence in the Portuguese landscape. Forest Systems, 2014, 23, 15.	0.3	12
101	Unravelling the effect of climate change on fire danger and fire behaviour in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain). Climatic Change, 2022, 173, .	3.6	12
102	Upscaling the estimation of surface-fire rate of spread in maritime pine (Pinus pinaster Ait.) forest. IForest, 2014, 7, 123-125.	1.4	11
103	The role of weather and climate conditions on extreme wildfires. , 2020, , 55-72.		11
104	Measuring foliar moisture content with a moisture analyzer. Canadian Journal of Forest Research, 2015, 45, 776-781.	1.7	10
105	Ungulates mediate tradeâ€offs between carbon storage and wildfire hazard in Mediterranean oak woodlands. Journal of Applied Ecology, 2019, 56, 699-710.	4.0	10
106	Wildfire policies contribution to foster extreme wildfires., 2020,, 187-200.		9
107	RATES OF SURFACE FIRE SPREAD IN A YOUNG CALABRIAN PINE (Pinus brutia Ten.) PLANTATION. Environmental Engineering and Management Journal, 2012, 11, 1475-1480.	0.6	9
108	On the socioeconomic drivers of municipal-level fire incidence in Portugal. Forest Policy and Economics, 2016, 62, 187-188.	3.4	8

#	Article	IF	Citations
109	Short-Term Recovery of the Aboveground Carbon Stock in Iberian Shrublands at the Extremes of an Environmental Gradient and as a Function of Burn Severity. Forests, 2022, 13, 145.	2.1	8
110	Fire Country: How Indigenous Fire Management Could Help Save Australia. International Journal of Wildland Fire, 2020, 29, 1052.	2.4	7
111	Tradeâ€offs between fire hazard reduction and conservation in a Natura 2000 shrub–grassland mosaic. Applied Vegetation Science, 2020, 23, 39-52.	1.9	6
112	The peatland vegetation burning debate: keep scientific critique in perspective. A response to Brown et al . and Douglas et al Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160434.	4.0	5
113	COMPORTAMENTO DO FOGO EM DIFERENTES PERÃODOS E CONFIGURAÇÕES DE UMA PAISAGEM NO NORDESTE DE PORTUGAL. Ciencia Florestal, 2017, 27, 457-469.	0.3	5
114	Informed debate on the use of fire for peatland management means acknowledging the complexity of socio-ecological systems. Nature Conservation, 0, 16, 59-77.	0.0	4
115	Fine-tuning the BFOLDS Fire Regime Module to support the assessment of fire-related functions and services in a changing Mediterranean mountain landscape. Environmental Modelling and Software, 2022, 155, 105464.	4.5	4
116	Sustainable Fire Management. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-11.	0.1	3
117	O utjecaju pojedinih parametara ložišta izvedenih iz Rothermelovog modela ravnoteže toplinske energije na stopu širenja požara. Sumarski List, 2018, 142, 80-80.	0.3	2
118	Fire Regimes, Landscape Dynamics, and Landscape Management. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 421-507.	0.3	2
119	Integrated Fire Management. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 509-597.	0.3	2
120	Drivers of wildland fire behaviour variation across the Earth. , 0, , 1267-1270.		2
121	Chemical Conditions for Ignition. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 7-18.	0.3	1
122	Extreme Fires. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 175-257.	0.3	1
123	Climate-driven variability in vegetation greenness over Portugal. Climate Research, 2018, 76, 95-113.	1.1	1
124	Is native forest an alternative to prevent wildfire in the WUI in Central Portugal?., 2021,, 67-77.		1
125	Assessing the fire tolerance of forest species in <scp>N</scp> ew <scp>C</scp> aledonian savanna: modelling choices do matter. Journal of Vegetation Science, 2013, 24, 1208-1211.	2.2	0
126	Fuel Dynamics and Management. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 363-420.	0.3	0

#	Article	IF	CITATIONS
127	Futuring: Trends in Fire Science and Management. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 599-631.	0.3	O
128	Fire Effects on Plants, Soils, and Animals. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 259-318.	0.3	0
129	From Fuels to Smoke: Chemical Processes. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 19-37.	0.3	O
130	Fire and People. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 319-357.	0.3	0
131	Fire Propagation. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 115-174.	0.3	O
132	Heat Production. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 39-62.	0.3	0
133	Heat for Pre-ignition and Flames. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 63-77.	0.3	O
134	Exploring the capability to forecast wildfires: spatial modelling of the Tavira/São BrÃ $_{i}$ s de Alportel 2012 wildfire. , 0, , 736-748.		0
135	Improving wildfire spread simulations using MODIS active fires: the FIRE-MODSAT project., 0,, 811-822.		O
136	Modelling fine fuel moisture content and the likelihood of fire spread in blue gum (Eucalyptus) Tj ETQq0 0 0 rgB	T /Overloc	k 10 Tf 50 38
137	Addressing trade-offs among fuel management scenarios through a dynamic and spatial integrated approach for enhanced decision-making in eucalyptus forest., 0,, 1623-1627.		O
138	Sustainable Fire Management. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1001-1010.	0.1	0
139	Searching for a COVID-19 effect on wildfire activity in Portugal but not finding it: A comment on Sci. Total Environ. 765, 142793. Science of the Total Environment, 2022, 821, 153173.	8.0	О
140	Evaluating the Effect of Prescribed Burning on the Reduction of Wildfire Extent in Portugal. SSRN Electronic Journal, 0, , .	0.4	0
141	Field-tested laboratory-derived models to predict forest fire front spread rate., 0,, 1278-1279.		O