
Esra Capanoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7341460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on protein–phenolic interactions and associated changes. Food Research International, 2013, 51, 954-970.	2.9	880
2	The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients, 2016, 8, 78.	1.7	573
3	Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. Journal of Agricultural and Food Chemistry, 2016, 64, 997-1027.	2.4	491
4	Antioxidants, Phenolic Compounds, and Nutritional Quality of Different Strawberry Genotypes. Journal of Agricultural and Food Chemistry, 2008, 56, 696-704.	2.4	396
5	A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 2019, 272, 494-506.	4.2	314
6	Advance on the Flavonoid <i>C</i> -glycosides and Health Benefits. Critical Reviews in Food Science and Nutrition, 2016, 56, S29-S45.	5.4	300
7	Guidelines for cell viability assays. Food Frontiers, 2020, 1, 332-349.	3.7	289
8	Changes in Antioxidant and Metabolite Profiles during Production of Tomato Paste. Journal of Agricultural and Food Chemistry, 2008, 56, 964-973.	2.4	287
9	Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. Journal of Agricultural and Food Chemistry, 2016, 64, 1028-1045.	2.4	216
10	Phenolic Compounds in the Potato and Its Byproducts: An Overview. International Journal of Molecular Sciences, 2016, 17, 835.	1.8	207
11	Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules, 2019, 9, 356.	1.8	198
12	Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany, 2007, 58, 4131-4146.	2.4	189
13	Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. International Journal of Molecular Sciences, 2015, 16, 21555-21574.	1.8	176
14	Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers, 2020, 1, 109-133.	3.7	172
15	A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Critical Reviews in Food Science and Nutrition, 2016, 56, S110-S129.	5.4	167
16	Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules, 2020, 25, 4711.	1.7	152
17	Biomarkers of Oxidative Stress and Antioxidant Defense. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114477.	1.4	109
18	Cucurbits Plants: A Key Emphasis to Its Pharmacological Potential. Molecules, 2019, 24, 1854.	1.7	106

#	Article	IF	CITATIONS
19	Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. Journal of Agricultural and Food Chemistry, 2022, 70, 6787-6804.	2.4	104
20	Home-Processed Red Beetroot (Beta vulgaris L.) Products: Changes in Antioxidant Properties and Bioaccessibility. International Journal of Molecular Sciences, 2016, 17, 858.	1.8	99
21	Available technologies on improving the stability of polyphenols in food processing. Food Frontiers, 2021, 2, 109-139.	3.7	98
22	The Effect of Industrial Food Processing on Potentially Health-Beneficial Tomato Antioxidants. Critical Reviews in Food Science and Nutrition, 2010, 50, 919-930.	5.4	96
23	Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chemistry, 2015, 186, 74-82.	4.2	93
24	Polysaccharides from Marine Enteromorpha: Structure and function. Trends in Food Science and Technology, 2020, 99, 11-20.	7.8	92
25	Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega, 2022, 7, 20441-20456.	1.6	92
26	Colour retention, anthocyanin stability and antioxidant capacity in black carrot (Daucus carota) jams and marmalades: Effect of processing, storage conditions and in vitro gastrointestinal digestion. Journal of Functional Foods, 2015, 13, 1-10.	1.6	86
27	Phytochemicals of herbs and spices: Health versus toxicological effects. Food and Chemical Toxicology, 2018, 119, 37-49.	1.8	86
28	Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends in Food Science and Technology, 2019, 85, 55-66.	7.8	86
29	Effect of food matrix on the content and bioavailability of flavonoids. Trends in Food Science and Technology, 2021, 117, 15-33.	7.8	86
30	Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays. Journal of Agricultural and Food Chemistry, 2016, 64, 1046-1070.	2.4	85
31	Home processing of tomatoes (<i>Solanum lycopersicum</i>): effects on <i>in vitro</i> bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. Journal of the Science of Food and Agriculture, 2014, 94, 2225-2233.	1.7	83
32	Polyphenol Content in Figs (<i>Ficus carica</i> L.): Effect of Sun-Drying. International Journal of Food Properties, 2015, 18, 521-535.	1.3	82
33	Changes in polyphenol content during production of grape juice concentrate. Food Chemistry, 2013, 139, 521-526.	4.2	71
34	Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food Research International, 2018, 108, 491-497.	2.9	71
35	Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis. Food Research International, 2019, 122, 528-536.	2.9	71
36	Antioxidant activity and polyphenol composition of black mulberry (Morus nigra L.) products. Journal of Berry Research, 2013, 3, 41-51.	0.7	70

#	Article	IF	CITATIONS
37	Bioaccessibility of Polyphenols from Plant-Processing Byproducts of Black Carrot (<i>Daucus) Tj ETQq1 1 0.78431</i>	.4 rgBT 2.4	/Overlock 10
38	Recent advances on the improvement of quercetin bioavailability. Trends in Food Science and Technology, 2022, 119, 192-200.	7.8	68
39	Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 811-842.	5.9	68
40	Investigating the <i>in vitro</i> bioaccessibility of polyphenols in fresh and sunâ€dried figs (<i><scp>F</scp>icus carica</i> L.). International Journal of Food Science and Technology, 2013, 48, 2621-2629.	1.3	67
41	A neutral polysaccharide with a triple helix structure from ginger: Characterization and immunomodulatory activity. Food Chemistry, 2021, 350, 129261.	4.2	67
42	Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants. Food Chemistry, 2017, 220, 51-58.	4.2	66
43	Potential Use of Turkish Medicinal Plants in the Treatment of Various Diseases. Molecules, 2016, 21, 257.	1.7	64
44	Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chemistry, 2018, 269, 258-263.	4.2	63
45	Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. International Journal of Biological Macromolecules, 2021, 193, 2320-2331.	3.6	63
46	The effects of juice processing on black mulberry antioxidants. Food Chemistry, 2015, 186, 277-284.	4.2	60
47	The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food Chemistry, 2018, 265, 260-273.	4.2	60
48	Cucurbita Plants: From Farm to Industry. Applied Sciences (Switzerland), 2019, 9, 3387.	1.3	60
49	Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: An inÂvitro digestion study with a standardized static model. LWT - Food Science and Technology, 2017, 77, 475-481.	2.5	58
50	Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules, 2020, 25, 5545.	1.7	58
51	Changes in sour cherry (Prunus cerasus L.) antioxidants during nectar processing and in vitro gastrointestinal digestion. Journal of Functional Foods, 2013, 5, 1402-1413.	1.6	56
52	Investigating the antioxidant and antimicrobial activities of different vinegars. European Food Research and Technology, 2017, 243, 2083-2094.	1.6	56
53	Evaluating the inÂvitro bioaccessibility of phenolics and antioxidant activity during consumption of dried fruits with nuts. LWT - Food Science and Technology, 2014, 56, 284-289.	2.5	55
54	Effect of dietary fiber (inulin) addition on phenolics and in vitro bioaccessibility of tomato sauce. Food Research International, 2018, 106, 129-135.	2.9	52

#	Article	IF	CITATIONS
55	Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry, 2022, 385, 132633.	4.2	52
56	Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit. Food Research International, 2013, 53, 218-225.	2.9	51
57	Fruit Antioxidants during Vinegar Processing: Changes in Content and in Vitro Bio-Accessibility. International Journal of Molecular Sciences, 2016, 17, 1658.	1.8	49
58	Antiâ€inflammatory potential of black carrot (<i>Daucus carota</i> L.) polyphenols in a coâ€culture model of intestinal Cacoâ€2 and endothelial EA.hy926 cells. Molecular Nutrition and Food Research, 2017, 61, 1600455.	1,5	49
59	Effect of different soluble dietary fibres on the phenolic profile of blackberry puree subjected to in vitro gastrointestinal digestion and large intestine fermentation. Food Research International, 2020, 130, 108954.	2.9	48
60	Dietary Flavonoids in the Management of Huntington's Disease: Mechanism and Clinical Perspective. EFood, 2020, 1, 38-52.	1.7	47
61	Starch modification with phenolics: methods, physicochemical property alteration, and mechanisms of glycaemic control. Trends in Food Science and Technology, 2021, 111, 12-26.	7.8	45
62	The potential of priming in food production. Trends in Food Science and Technology, 2010, 21, 399-407.	7.8	44
63	Frozen yogurt with added inulin and isomalt. Journal of Dairy Science, 2011, 94, 1647-1656.	1.4	44
64	Processing black mulberry into jam: effects on antioxidant potential and <i>in vitro</i> bioaccessibility. Journal of the Science of Food and Agriculture, 2017, 97, 3106-3113.	1.7	43
65	PVP/flavonoid coprecipitation by supercritical antisolvent process. Chemical Engineering and Processing: Process Intensification, 2019, 146, 107689.	1.8	42
66	Valorization and Application of Fruit and Vegetable Wastes and By-Products for Food Packaging Materials. Molecules, 2021, 26, 4031.	1.7	41
67	Investigating the effect of roasting on functional properties of defatted hazelnut flour by response surface methodology (RSM). LWT - Food Science and Technology, 2015, 63, 758-765.	2.5	40
68	Impact of liposomal encapsulation on degradation of anthocyanins of black carrot extract by adding ascorbic acid. Food and Function, 2017, 8, 1085-1093.	2.1	40
69	Fruit Juice Industry Wastes as a Source of Bioactives. Journal of Agricultural and Food Chemistry, 2022, 70, 6805-6832.	2.4	38
70	Investigating the Transport Dynamics of Anthocyanins from Unprocessed Fruit and Processed Fruit Juice from Sour Cherry (<i>Prunus cerasus</i> L.) across Intestinal Epithelial Cells. Journal of Agricultural and Food Chemistry, 2013, 61, 11434-11441.	2.4	36
71	Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health. Nutrients, 2015, 7, 9229-9255.	1.7	36
72	Resveratrol improves TNF-α-induced endothelial dysfunction in a coculture model of a Caco-2 with an endothelial cell line. Journal of Nutritional Biochemistry, 2016, 36, 21-30.	1.9	36

#	Article	IF	CITATIONS
73	Formation and characterization of spray dried coated and uncoated liposomes with encapsulated black carrot extract. Journal of Food Engineering, 2019, 246, 42-50.	2.7	35
74	Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Research International, 2021, 140, 110039.	2.9	35
75	Procyanidins in fruit from Sour cherry (Prunus cerasus) differ strongly in chainlength from those in Laurel cherry (Prunus lauracerasus) and Cornelian cherry (Cornus mas). Journal of Berry Research, 2011, 1, 137-146.	0.7	34
76	Effect of moderate electric field on structural and thermo-physical properties of sunflower protein and sodium caseinate. Innovative Food Science and Emerging Technologies, 2021, 67, 102593.	2.7	34
77	Effect of industrial juice concentrate processing on phenolic profile and antioxidant capacity of black carrots. International Journal of Food Science and Technology, 2014, 49, 819-829.	1.3	33
78	Antioxidant and antimicrobial activities of fennel, ginger, oregano and thyme essential oils. Food Frontiers, 2021, 2, 508-518.	3.7	33
79	Investigating the <i>in-vitro</i> bioaccessibility of propolis and pollen using a simulated gastrointestinal digestion System. Journal of Apicultural Research, 2014, 53, 101-108.	0.7	31
80	<i>In vitro</i> gastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties. International Journal of Food Science and Technology, 2014, 49, 1027-1039.	1.3	30
81	Prosopis Plant Chemical Composition and Pharmacological Attributes: Targeting Clinical Studies from Preclinical Evidence. Biomolecules, 2019, 9, 777.	1.8	30
82	Identification and Antiâ€oxidant Capacity Determination of Phenolics and their Glycosides in Elderflower by Onâ€line HPLC–CUPRAC Method. Phytochemical Analysis, 2014, 25, 147-154.	1.2	29
83	Therapeutic Potential of Neoechinulins and Their Derivatives: An Overview of the Molecular Mechanisms Behind Pharmacological Activities. Frontiers in Nutrition, 2021, 8, 664197.	1.6	29
84	Interaction of lentil protein and onion skin phenolics: Effects on functional properties of proteins and in vitro gastrointestinal digestibility. Food Chemistry, 2022, 372, 130892.	4.2	27
85	Optimization of Extraction of Bioactive Compounds from Black Carrot Using Response Surface Methodology (RSM). Food Analytical Methods, 2016, 9, 1876-1886.	1.3	26
86	The effect of food processing on bioavailability of tomato antioxidants. Journal of Berry Research, 2013, 3, 65-77.	0.7	25
87	Protein extracts from de-oiled sunflower cake: Structural, physico-chemical and functional properties after removal of phenolics. Food Bioscience, 2020, 38, 100749.	2.0	25
88	Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal digestion on the untargeted metabolomic profile. Food Chemistry, 2020, 332, 127415.	4.2	25
89	Phytotherapy and food applications from <i>Brassica</i> genus. Phytotherapy Research, 2021, 35, 3590-3609.	2.8	23
90	Black carrot polyphenols: effect of processing, storage and digestion—an overview. Phytochemistry Reviews, 2018, 17, 379-395.	3.1	22

#	Article	IF	CITATIONS
91	Evaluation of antioxidant activity/capacity measurement methods for food products. , 0, , 273-286.		21
92	Retention of polyphenols and vitamin C in cranberrybush purée (Viburnum opulus) by means of non-thermal treatments. Food Chemistry, 2021, 360, 129918.	4.2	21
93	Evaluation of Turkish propolis for its chemical composition, antioxidant capacity, anti-proliferative effect on several human breast cancer cell lines and proliferative effect on fibroblasts and mouse mesenchymal stem cell line. Journal of Apicultural Research, 2018, 57, 627-638.	0.7	20
94	Impacts of selected lactic acid bacteria strains on the aroma and bioactive compositions of fermented gilaburu (Viburnum opulus) juices. Food Chemistry, 2022, 378, 132079.	4.2	20
95	Bioactive components and anti-diabetic properties of <i>Moringa oleifera</i> Lam. Critical Reviews in Food Science and Nutrition, 2022, 62, 3873-3897.	5.4	20
96	The influence of thermal processing on emulsion properties of defatted hazelnut flour. Food Chemistry, 2015, 167, 100-106.	4.2	19
97	Interaction of phenolics with food matrix: In vitro and in vivo approaches. Mediterranean Journal of Nutrition and Metabolism, 2020, 13, 63-74.	0.2	18
98	Addition of milk to coffee beverages; the effect on functional, nutritional, and sensorial properties. Critical Reviews in Food Science and Nutrition, 2022, 62, 6132-6152.	5.4	18
99	Investigating the Antioxidant Potential of Turkish Dried Fruits. International Journal of Food Properties, 2014, 17, 690-702.	1.3	17
100	Investigating the Effect of Aging on the Phenolic Content, Antioxidant Activity and Anthocyanins in Turkish Wines. Journal of Food Processing and Preservation, 2015, 39, 1845-1853.	0.9	17
101	Physicochemical, rheological, molecular, thermal and sensory evaluation of newly developed complementary infant (6–24Âmonths old) foods prepared with quinoa (Chenopodium quinoa Willd.) flour. Food Chemistry, 2020, 315, 126208.	4.2	17
102	Antioxidant and anticancer potentials of edible flowers: where do we stand?. Critical Reviews in Food Science and Nutrition, 2022, 62, 8589-8645.	5.4	17
103	Coffee Phenolics and Their Interaction with Other Food Phenolics: Antagonistic and Synergistic Effects. ACS Omega, 2022, 7, 1595-1601.	1.6	17
104	Effect of food processing on antioxidants, their bioavailability and potential relevance to human health. Food Chemistry: X, 2022, 14, 100334.	1.8	17
105	Technological aspects and stability of polyphenols. , 2018, , 295-323.		16
106	Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. Analytical Methods, 2020, 12, 5266-5321.	1.3	16
107	Impact of tomato pomace powder added to extruded snacks on the in vitro gastrointestinal behaviour and stability of bioactive compounds. Food Chemistry, 2022, 368, 130847.	4.2	16
108	Polyphenol-Protein Interactions and Changes in Functional Properties and Digestibility. , 2019, , 566-577.		15

#	Article	IF	CITATIONS
109	Variation in secondary metabolites in a unique set of tomato accessions collected in Turkey. Food Chemistry, 2020, 317, 126406.	4.2	15
110	A review on protein extracts from sunflower cake: techno-functional properties and promising modification methods. Critical Reviews in Food Science and Nutrition, 2022, 62, 6682-6697.	5.4	15
111	Increasing the Bioaccessibility of Antioxidants in Tomato Pomace Using Excipient Emulsions. Food Biophysics, 2021, 16, 355-364.	1.4	15
112	Contribution of edible flowers to the Mediterranean diet: Phytonutrients, bioactivity evaluation and applications. Food Frontiers, 2022, 3, 592-630.	3.7	15
113	Effects of Honey Addition on Antioxidative Properties of Different Herbal Teas. Polish Journal of Food and Nutrition Sciences, 2015, 65, 127-135.	0.6	14
114	Investigating the antioxidant potential of Turkish herbs and spices. Quality Assurance and Safety of Crops and Foods, 2014, 6, 151-158.	1.8	13
115	Effect of Novel Food Processing Technologies on Beverage Antioxidants. , 2019, , 413-449.		13
116	Bioactive component analysis. , 2021, , 41-65.		12
117	Activity and bioaccessibility of antioxidants in yoghurt enriched with black mulberry as affected by fermentation and stage of fruit addition. International Dairy Journal, 2021, 117, 105018.	1.5	12
118	Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds. Food Chemistry, 2021, 357, 129757.	4.2	12
119	Role of Dietary Antioxidants in Neurodegenerative Diseases: Where are We Standing?. Current Pharmaceutical Design, 2020, 26, 714-729.	0.9	12
120	IMPROVING THE QUALITY AND SHELF LIFE OF TURKISH ALMOND PASTE. Journal of Food Quality, 2008, 31, 429-445.	1.4	11
121	The antimicrobial and antioxidant properties of garagurt: traditional Cornelian cherry (Cornus mas) marmalade. Quality Assurance and Safety of Crops and Foods, 2020, 12, 12-23.	1.8	11
122	Bioaccessibility and transepithelial transportation of cranberrybush (Viburnum opulus) phenolics: Effects of non-thermal processing and food matrix. Food Chemistry, 2022, 380, 132036.	4.2	11
123	Changes in the phenolic profile, antioxidant capacity and in vitro bioaccessibility of two Algerian grape varieties, Cardinal and Dabouki (Sabel), during the production of traditional sun-dried raisins and homemade jam. Journal of Berry Research, 2019, 9, 709-724.	0.7	10
124	Biomarkers of oxidative stress and cellular-based assays of indirect antioxidant measurement. , 0, , 165-186.		9
125	Chemistry of Protein-Phenolic Interactions Toward the Microbiota and Microbial Infections. Frontiers in Nutrition, 0, 9, .	1.6	9
126	Stability evaluation of interdigitated liposomes prepared with a combination of 1, <scp>2â€d</scp> <scp>istearoyl</scp> â€snâ€glyceroâ€3â€phosphocholine and 1, <scp>2â€dilauroyl</scp> â€snâ€glyceroâ€3â€phosphocholine. Journal of Chemical Technology and Biotechnology, 2021, 96, 2537-2546.	1.6	8

4

#	Article	IF	CITATIONS
127	Influence of non-thermal microwave radiation on emulsifying properties of sunflower protein. Food Chemistry, 2022, 372, 131275.	4.2	8
128	The Molecular Docking of Flavonoids Isolated from <i>Daucus carota</i> as a Dual Inhibitor of MDM2 and MDMX. Recent Patents on Anti-Cancer Drug Discovery, 2020, 15, 154-164.	0.8	8
129	Origin Determination and Differentiation of Gelatin Species of Bovine, Porcine, and Piscine through Analytical Methods. Turkish Journal of Agriculture: Food Science and Technology, 2017, 5, 507.	0.1	8
130	Ascorbic acidâ€induced degradation of liposomeâ€encapsulated acylated and nonâ€acylated anthocyanins of black carrot extract. Journal of the Science of Food and Agriculture, 2021, 101, 5707-5714.	1.7	7
131	Investigating the effects of supercritical antisolvent process and food models on antioxidant capacity, bioaccessibility and transepithelial transport of quercetin and rutin. Food and Function, 2022, 13, 4469-4477.	2.1	7
132	Elucidation of the impact of four different drying methods on the phenolics, volatiles, and color properties of the peels of four types of citrus fruits. Journal of the Science of Food and Agriculture, 2022, 102, 6036-6046.	1.7	7
133	Antioxidant Activity and Capacity Measurement. Reference Series in Phytochemistry, 2022, , 709-773.	0.2	7
134	Introduction to Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. Journal of Agricultural and Food Chemistry, 2022, 70, 6785-6786.	2.4	7
135	Correlation of Rutin Accumulation with 3-O-Glucosyl Transferase and Phenylalanine Ammonia-lyase Activities During the Ripening of Tomato Fruit. Plant Foods for Human Nutrition, 2012, 67, 371-376.	1.4	6
136	Nomenclature and general classification of antioxidant activity/capacity assays. , 0, , 1-19.		6
137	Effect of dietary fibre addition in tomato sauce on the <i>in vitro</i> bioaccessibility of carotenoids. Quality Assurance and Safety of Crops and Foods, 2018, 10, 277-283.	1.8	6
138	A comparative study on physicochemical properties and in vitro bioaccessibility of bioactive compounds in rosehip (<i>Rosa canina</i> L) infusions treated by nonâ€ŧhermal and thermal treatments. Journal of Food Processing and Preservation, 2022, 46, e16096.	0.9	6
139	Application of Molecularly Imprinted Polymers for the Detection of Volatile and Off-Odor Compounds in Food Matrices. ACS Omega, 2022, 7, 15258-15266.	1.6	6
140	Investigating the antioxidant properties and rutin content of Sea buckthorn (Hippophae rhamnoides) Tj ETQqO C	0 rgBT /C	Dveglock 10 Tf
141	Electron transfer-based antioxidant capacity assays and the cupric ion reducing antioxidant capacity (CUPRAC) assay. , 0, , 57-75.		5
142	Oil matrix modulates the bioaccessibility of polyphenols: a study of salad dressing formulation with industrial broccoli byâ€products and lemon juice. Journal of the Science of Food and Agriculture, 2022, 102, 5368-5377.	1.7	5
143	Physico-chemical principles of antioxidant action, including solvent and matrix dependence and interfacial phenomena. , 0, , 225-272.		4

Assays based on competitive measurement of the scavenging ability of reactive oxygen/nitrogen species. , 0, , 21-38.

#	Article	IF	CITATIONS
145	Effects of cooking and extra virgin olive oil addition on bioaccessibility of carotenes in tomato sauce. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2019, 43, 478-484.	0.8	4
146	Introduction to nutraceuticals, medicinal foods, and herbs. , 2021, , 1-34.		4
147	Toxicological effects of commonly used herbs and spices. , 2021, , 201-213.		4
148	Bioaccessibility of terebinth (Pistacia terebinthusL.) coffee polyphenols: Influence of milk, sugar and sweetener addition. Food Chemistry, 2021, 374, 131728.	4.2	4
149	Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules, 2022, 27, 108.	1.7	4
150	Nutritional and Functional Properties of Novel Protein Sources. Food Reviews International, 2023, 39, 6045-6077.	4.3	4
151	Coarse cereals modulating chronic low-grade inflammation: review. Critical Reviews in Food Science and Nutrition, 2023, 63, 9694-9715.	5.4	4
152	Bioavailability of Rosehip (Rosa canina L.) Infusion Phenolics Prepared by Thermal, Pulsed Electric Field and High Pressure Processing. Foods, 2022, 11, 1955.	1.9	4
153	Antioxidants in oxidation control. , 0, , 287-320.		3
154	Evaluation of the antioxidant capacity of food samples: a chemical examination of the oxygen radical absorbance capacity assay. , 2017, , 39-55.		3
155	A Comparative Analysis of Different Varietal of Fresh and Dried Figs by <i>In Vitro</i> Bioaccessibility of Phenolic Compounds and Antioxidant Activities. Acta Universitatis Cibiniensis Series E: Food Technology, 2021, 25, 15-30.	0.6	3
156	CHAPTER 10. Models for Studying Polyphenols and Carotenoids Digestion, Bioaccessibility and Colonic Fermentation. Food Chemistry, Function and Analysis, 0, , 201-219.	0.1	3
157	Dietary Flavonols and O-Glycosides. , 2020, , 1-40.		3
158	Nanosensors for Foods. Food Engineering Series, 2020, , 327-375.	0.3	3
159	SOUR CHERRY (PRUNUS CERASUS L.) ANTHOCYANINS: EFFECTS OF JUICE PROCESSING ON PHENOLIC COMPOUNDS AND BIOAVAILABILITY. Acta Horticulturae, 2014, , 387-398.	0.1	2
160	Nanotechnological Methods of Antioxidant Characterization. ACS Symposium Series, 2015, , 209-234.	0.5	2
161	Use of Nanotechnological Methods for the Analysis and Stability of Food Antioxidants. , 2018, , 311-350.		2
162	Possible health risks associated with nanostructures in food. , 2021, , 31-118.		2

#	Article	IF	CITATIONS
163	Antioxidant Activity and Capacity Measurement. Reference Series in Phytochemistry, 2021, , 1-66.	0.2	2
164	Natural diversity in health related phytochemicals in Turkish tomatoes. Journal of Berry Research, 2021, 11, 279-299.	0.7	2
165	Tomato Polyphenolics: Putative Applications to Health and Disease. , 2018, , 93-102.		1
166	Additional data on stability of black carrot extract-loaded liposomes during storage. Data in Brief, 2018, 21, 562-567.	0.5	1
167	Research on food antioxidants—A profile of Esra Capanoglu. Food Frontiers, 2020, 1, 502-503.	3.7	1
168	Innovations in functional foods development. , 2021, , 73-130.		1
169	Recent advances in metabolomic analyses of berry fruits and their in vivo metabolites. Journal of Berry Research, 2021, , 1-23.	0.7	1
170	Extraction, processing, and encapsulation of food bioactive compounds. Food Chemistry, 2022, 381, 132117.	4.2	1
171	Microencapsulation Methods for Food Antioxidants. Reference Series in Phytochemistry, 2022, , 799-835.	0.2	1
172	Kinetic matching approach for rapid assessment of endpoint antioxidant capacity. , 0, , 321-331.		0
173	Dietary Flavonols and O-Glycosides. , 2021, , 57-96.		0
174	Microencapsulation Methods for Food Antioxidants. Reference Series in Phytochemistry, 2021, , 1-37.	0.2	0
175	Flavor Compounds in Foods. , 2009, , 291-312.		0