Caryn E Outten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7341329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of thiols in iron–sulfur cluster biogenesis. , 2022, , 487-506.		1
2	Iron-sulfur cluster biogenesis, trafficking, and signaling: Roles for CGFS glutaredoxins and BolA proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118847.	1.9	30
3	Iron–sulfur cluster signaling: The common thread in fungal iron regulation. Current Opinion in Chemical Biology, 2020, 55, 189-201.	2.8	39
4	The conserved CDC motif in the yeast iron regulator Aft2 mediates iron–sulfur cluster exchange and protein–protein interactions with Grx3 and Bol2. Journal of Biological Inorganic Chemistry, 2019, 24, 809-815.	1.1	18
5	Monothiol Glutaredoxins Grx3/4 and the BolA Protein Bol2 Modulate Iron Sensing and Regulation in Yeast S. cerevisiae. FASEB Journal, 2019, 33, 476.1.	0.2	Ο
6	Characterization of Glutaredoxin Fe–S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy. Methods in Enzymology, 2018, 599, 327-353.	0.4	7
7	Regulation of Iron Metabolism by [2Feâ€2S]â€Binding Glutaredoxins. FASEB Journal, 2018, 32, 477.2.	0.2	0
8	Checks and balances for the iron bank. Journal of Biological Chemistry, 2017, 292, 15990-15991.	1.6	7
9	Endoplasmic Reticulum Transport of Glutathione by Sec61 Is Regulated by Ero1 and Bip. Molecular Cell, 2017, 67, 962-973.e5.	4.5	91
10	Schizosaccharomyces pombe Grx4 regulates the transcriptional repressor Php4 via [2Fe–2S] cluster binding. Metallomics, 2017, 9, 1096-1105.	1.0	24
11	7 The role of Fe-S clusters in regulation of yeast iron homeostasis. , 2017, , 161-186.		0
12	The <i>Escherichia coli</i> BolA Protein IbaG Forms a Histidine-Ligated [2Fe-2S]-Bridged Complex with Grx4. Biochemistry, 2016, 55, 6869-6879.	1.2	18
13	The Myeloablative Drug Busulfan Converts Cysteine to Dehydroalanine and Lanthionine in Redoxins. Biochemistry, 2016, 55, 4720-4730.	1.2	13
14	Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System. Journal of Biological Chemistry, 2015, 290, 27829-27840.	1.6	19
15	Molecular mechanism and structure of the <i>Saccharomyces cerevisiae</i> iron regulator Aft2. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4043-4048.	3.3	109
16	16. The role of Fe-S clusters in regulation of yeast iron homeostasis. , 2014, , 411-436.		0
17	Iron sensing and regulation in Saccharomyces cerevisiae: Ironing out the mechanistic details. Current Opinion in Microbiology, 2013, 16, 662-668.	2.3	131
18	Monothiol glutaredoxins and A-type proteins: partners in Fe–S cluster trafficking. Dalton Transactions, 2013, 42, 3107.	1.6	91

CARYN E OUTTEN

#	Article	IF	CITATIONS
19	Functions and Cellular Compartmentation of the Thioredoxin and Glutathione Pathways in Yeast. Antioxidants and Redox Signaling, 2013, 18, 1699-1711.	2.5	111
20	The Iron Metallome in Eukaryotic Organisms. Metal Ions in Life Sciences, 2013, 12, 241-278.	2.8	94
21	Human Glutaredoxin 3 Forms [2Fe-2S]-Bridged Complexes with Human BolA2. Biochemistry, 2012, 51, 1687-1696.	1.2	99
22	Monothiol CGFS Clutaredoxins and BolA-like Proteins: [2Fe-2S] Binding Partners in Iron Homeostasis. Biochemistry, 2012, 51, 4377-4389.	1.2	139
23	Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1. Biochemical Journal, 2012, 446, 59-67.	1.7	27
24	Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes. Free Radical Biology and Medicine, 2012, 52, 2254-2265.	1.3	49
25	Forging ahead: new mechanistic insights into iron biochemistry. Current Opinion in Chemical Biology, 2011, 15, 257-259.	2.8	2
26	Histidine 103 in Fra2 Is an Iron-Sulfur Cluster Ligand in the [2Fe-2S] Fra2-Grx3 Complex and Is Required for in Vivo Iron Signaling in Yeast. Journal of Biological Chemistry, 2011, 286, 867-876.	1.6	105
27	Activation of Cu,Zn-Superoxide Dismutase in the Absence of Oxygen and the Copper Chaperone CCS. Journal of Biological Chemistry, 2009, 284, 21863-21871.	1.6	61
28	The Yeast Iron Regulatory Proteins Grx3/4 and Fra2 Form Heterodimeric Complexes Containing a [2Fe-2S] Cluster with Cysteinyl and Histidyl Ligation. Biochemistry, 2009, 48, 9569-9581.	1.2	203
29	Structure of the thioredoxin-like domain of yeast glutaredoxin 3. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 927-932.	2.5	16
30	The Redox Environment in the Mitochondrial Intermembrane Space Is Maintained Separately from the Cytosol and Matrix. Journal of Biological Chemistry, 2008, 283, 29126-29134.	1.6	222
31	Identification of FRA1 and FRA2 as Genes Involved in Regulating the Yeast Iron Regulon in Response to Decreased Mitochondrial Iron-Sulfur Cluster Synthesis. Journal of Biological Chemistry, 2008, 283, 10276-10286.	1.6	202
32	The Effects of Glutaredoxin and Copper Activation Pathways on the Disulfide and Stability of Cu,Zn Superoxide Dismutase. Journal of Biological Chemistry, 2006, 281, 28648-28656.	1.6	45
33	Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochemical Journal, 2005, 388, 93-101.	1.7	71
34	Alternative Start Sites in the Saccharomyces cerevisiae GLR1 Gene Are Responsible for Mitochondrial and Cytosolic Isoforms of Glutathione Reductase. Journal of Biological Chemistry, 2004, 279, 7785-7791.	1.6	110
35	A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO Journal, 2003, 22, 2015-2024.	3.5	155
36	Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR. Science, 2003, 301, 1383-1387.	6.0	598

CARYN E OUTTEN

#	Article	IF	CITATIONS
37	A New Zinc–protein Coordination Site in Intracellular Metal Trafficking: Solution Structure of the Apo and Zn(II) forms of ZntA(46–118). Journal of Molecular Biology, 2002, 323, 883-897.	2.0	132
38	Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis. Science, 2001, 292, 2488-2492.	6.0	1,342
39	Extreme Zinc-Binding Thermodynamics of the Metal Sensor/Regulator Protein, ZntR. Journal of the American Chemical Society, 2001, 123, 8614-8615.	6.6	87
40	Characterization of the Metal Receptor Sites inEscherichia coliZur, an Ultrasensitive Zinc(II) Metalloregulatory Proteinâ€. Biochemistry, 2001, 40, 10417-10423.	1.2	106
41	Transcriptional Activation of an Escherichia coliCopper Efflux Regulon by the Chromosomal MerR Homologue, CueR. Journal of Biological Chemistry, 2000, 275, 31024-31029.	1.6	288
42	The Ferric Uptake Regulation (Fur) Repressor Is a Zinc Metalloprotein. Biochemistry, 1999, 38, 6559-6569.	1.2	136
43	DNA Distortion Mechanism for Transcriptional Activation by ZntR, a Zn(II)-responsive MerR Homologue in Escherichia coli. Journal of Biological Chemistry, 1999, 274, 37517-37524.	1.6	183