List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7340726/publications.pdf Version: 2024-02-01

FRIC D YOUNG

#	Article	IF	CITATIONS
1	Representation of steadyâ€state vowels in the temporal aspects of the discharge patterns of populations of auditoryâ€nerve fibers. Journal of the Acoustical Society of America, 1979, 66, 1381-1403.	1.1	542
2	Encoding of steadyâ€state vowels in the auditory nerve: Representation in terms of discharge rate. Journal of the Acoustical Society of America, 1979, 66, 470-479.	1.1	401
3	Responses of Squirrel Monkey Vestibular Neurons to Audio-Frequency Sound and Head Vibration. Acta Oto-Laryngologica, 1977, 84, 352-360.	0.9	319
4	What's a cerebellar circuit doing in the auditory system?. Trends in Neurosciences, 2004, 27, 104-110.	8.6	302
5	Pinna-based spectral cues for sound localization in cat. Hearing Research, 1992, 58, 132-152.	2.0	227
6	Reduction of Information Redundancy in the Ascending Auditory Pathway. Neuron, 2006, 51, 359-368.	8.1	226
7	Rate responses of auditory nerve fibers to tones in noise near masked threshold. Journal of the Acoustical Society of America, 1986, 79, 426-442.	1.1	205
8	Proprioceptive Information from the Pinna Provides Somatosensory Input to Cat Dorsal Cochlear Nucleus. Journal of Neuroscience, 2001, 21, 7848-7858.	3.6	192
9	Effects of nonlinearities on speech encoding in the auditory nerve. Journal of the Acoustical Society of America, 1980, 68, 858-875.	1.1	175
10	Multiscale Optical Ca2+ Imaging of Tonal Organization in Mouse Auditory Cortex. Neuron, 2014, 83, 944-959.	8.1	173
11	First-spike latency information in single neurons increases when referenced to population onset. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5175-5180.	7.1	158
12	Effects of acoustic trauma on the representation of the vowel /Îμ/ in cat auditory nerve fibers. Journal of the Acoustical Society of America, 1997, 101, 3602-3616.	1.1	157
13	Discharge patterns of single fibers in the pigeon auditory nerve. Brain Research, 1974, 70, 431-447.	2.2	146
14	Response properties of type II and type III units in dorsal cochlear nucleus. Hearing Research, 1982, 6, 153-169.	2.0	139
15	An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. Journal of the Acoustical Society of America, 2003, 113, 369-388.	1.1	118
16	Response Growth With Sound Level in Auditory-Nerve Fibers After Noise-Induced Hearing Loss. Journal of Neurophysiology, 2004, 91, 784-795.	1.8	114
17	Maximally fault tolerant neural networks. IEEE Transactions on Neural Networks, 1992, 3, 14-23.	4.2	110
18	Identification of response properties of ascending axons from dorsal cochlear nucleus. Brain Research, 1980, 200, 23-37.	2.2	106

#	Article	IF	CITATIONS
19	Wide-Dynamic-Range Forward Suppression in Marmoset Inferior Colliculus Neurons Is Generated Centrally and Accounts for Perceptual Masking. Journal of Neuroscience, 2009, 29, 2553-2562.	3.6	100
20	Encoding Intensity in Ventral Cochlear Nucleus Following Acoustic Trauma: Implications for Loudness Recruitment. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 5-22.	1.8	97
21	Recovery from sound exposure in auditoryâ€nerve fibers. Journal of the Acoustical Society of America, 1973, 54, 1535-1543.	1.1	87
22	Effects of pinna position on headâ€related transfer functions in the cat. Journal of the Acoustical Society of America, 1996, 99, 3064-3076.	1.1	86
23	Granule Cell Activation of Complex-Spiking Neurons in Dorsal Cochlear Nucleus. Journal of Neuroscience, 1997, 17, 6798-6806.	3.6	86
24	Neural representation of spectral and temporal information in speech. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 923-945.	4.0	84
25	Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11780-11786.	7.1	82
26	Auditory-Nerve Rate Responses are Inconsistent with Common Hypotheses for the Neural Correlates of Loudness Recruitment. JARO - Journal of the Association for Research in Otolaryngology, 2005, 6, 91-105.	1.8	74
27	Pharmacological Evidence of Inhibitory and Disinhibitory Neuronal Circuits in Dorsal Cochlear Nucleus. Journal of Neurophysiology, 2000, 83, 926-940.	1.8	71
28	Circuitry and Function of the Dorsal Cochlear Nucleus. Springer Handbook of Auditory Research, 2002, , 160-206.	0.7	64
29	Spectral Integration by Type II Interneurons in Dorsal Cochlear Nucleus. Journal of Neurophysiology, 1999, 82, 648-663.	1.8	61
30	Limited Segregation of Different Types of Sound Localization Information among Classes of Units in the Inferior Colliculus. Journal of Neuroscience, 2005, 25, 7575-7585.	3.6	61
31	Neural Correlates of Context-Dependent Perceptual Enhancement in the Inferior Colliculus. Journal of Neuroscience, 2010, 30, 6577-6587.	3.6	56
32	Linear and Nonlinear Spectral Integration in Type IV Neurons of the Dorsal Cochlear Nucleus. II. Predicting Responses With the Use of Nonlinear Models. Journal of Neurophysiology, 1997, 78, 800-811.	1.8	54
33	Spectral Edge Sensitivity in Neural Circuits of the Dorsal Cochlear Nucleus. Journal of Neuroscience, 2005, 25, 3680-3691.	3.6	54
34	Neural network models of sound localization based on directional filtering by the pinna. Journal of the Acoustical Society of America, 1992, 92, 3140-3156.	1.1	53
35	Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations. Journal of Neuroscience, 2016, 36, 10584-10597.	3.6	53
36	Auditoryâ€nerve encoding of pinnaâ€based spectral cues: Rate representation of highâ€frequency stimuli. Journal of the Acoustical Society of America, 1995, 97, 1764-1776.	1.1	52

#	Article	IF	CITATIONS
37	Spike-Timing Codes Enhance the Representation of Multiple Simultaneous Sound-Localization Cues in the Inferior Colliculus. Journal of Neuroscience, 2006, 26, 3889-3898.	3.6	51
38	Effects of Unilateral Acoustic Trauma on Tinnitus-Related Spontaneous Activity in the Inferior Colliculus. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 1007-1022.	1.8	49
39	Contrast enhancement improves the representation of /É›/-like vowels in the hearing-impaired auditory nerve. Journal of the Acoustical Society of America, 1999, 106, 2693-2708.	1.1	48
40	Comparative analysis of spectroâ€ŧemporal receptive fields, reverse correlation functions, and frequency tuning curves of auditoryâ€nerve fibers. Journal of the Acoustical Society of America, 1994, 95, 410-422.	1.1	46
41	The representation of concurrent vowels in the cat anesthetized ventral cochlear nucleus: Evidence for a periodicity-tagged spectral representation. Journal of the Acoustical Society of America, 1997, 102, 1056-1071.	1.1	44
42	Discharge-rate dependence of refractory behavior of cat auditory-nerve fibers. Hearing Research, 1993, 69, 151-162.	2.0	43
43	Cues for Sound Localization Are Encoded in Multiple Aspects of Spike Trains in the Inferior Colliculus. Journal of Neurophysiology, 2008, 99, 1672-1682.	1.8	43
44	Effects of high sound levels on responses to the vowel /l̂µ/ in cat auditory nerve. Hearing Research, 1998, 123, 61-77.	2.0	39
45	Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation. Neuroscience, 2008, 154, 127-138.	2.3	39
46	Representation of whispered vowels in discharge patterns of auditory-nerve fibers. Hearing Research, 1982, 8, 49-58.	2.0	37
47	Multiscale mapping of frequency sweep rate in mouse auditory cortex. Hearing Research, 2017, 344, 207-222.	2.0	37
48	Somatosensory context alters auditory responses in the cochlear nucleus. Journal of Neurophysiology, 2011, 105, 1063-1070.	1.8	36
49	Rate-place and temporal-place representations of vowels in the auditory nerve and anteroventral cochlear nucleus. Journal of Phonetics, 1988, 16, 37-53.	1.2	33
50	Dorsal cochlear nucleus response properties following acoustic trauma: Response maps and spontaneous activity. Hearing Research, 2006, 216-217, 176-188.	2.0	32
51	Sound localization cues in the marmoset monkey. Hearing Research, 2010, 260, 96-108.	2.0	31
52	Frequency-shaped amplification changes the neural representation of speech with noise-induced hearing loss. Hearing Research, 1998, 117, 57-70.	2.0	30
53	WHY DO CATS NEED A DORSAL COCHLEAR NUCLEUS?. Journal of Basic and Clinical Physiology and Pharmacology, 1996, 7, 199-220.	1.3	29
54	Nonlinear Modeling of Auditory-Nerve Rate Responses to Wideband Stimuli. Journal of Neurophysiology, 2005, 94, 4441-4454.	1.8	29

#	Article	IF	CITATIONS
55	Biological Basis of Hearing-Aid Design. Annals of Biomedical Engineering, 2002, 30, 157-168.	2.5	28
56	Linear and Nonlinear Spectral Integration in Type IV Neurons of the Dorsal Cochlear Nucleus. I. Regions of Linear Interaction. Journal of Neurophysiology, 1997, 78, 790-799.	1.8	26
57	Discriminability of vowel representations in cat auditory-nerve fibers after acoustic trauma. Journal of the Acoustical Society of America, 1999, 105, 311-325.	1.1	25
58	Linear Processing of Interaural Level Difference Underlies Spatial Tuning in the Nucleus of the Brachium of the Inferior Colliculus. Journal of Neuroscience, 2013, 33, 3891-3904.	3.6	24
59	Cochlear Nucleus. , 2004, , 125-164.		24
60	The parameter identification problem for the somatic shunt model. Biological Cybernetics, 1992, 66, 307-318.	1.3	23
61	Parallel processing in the nervous system: Evidence from sensory maps. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 933-934.	7.1	23
62	Effects of Stimulus Spectral Contrast on Receptive Fields of Dorsal Cochlear Nucleus Neurons. Journal of Neurophysiology, 2007, 98, 2133-2143.	1.8	19
63	Information conveyed by inferior colliculus neurons about stimuli with aligned and misaligned sound localization cues. Journal of Neurophysiology, 2011, 106, 974-985.	1.8	19
64	Discrimination of Voiced Stop Consonants Based on Auditory Nerve Discharges. Journal of Neuroscience, 2004, 24, 531-541.	3.6	17
65	Isoflurane/N2O anesthesia suppresses narrowband but not wideband inhibition in dorsal cochlear nucleus. Hearing Research, 2004, 188, 29-41.	2.0	16
66	Inhibitory connections between AVCN and DCN: Evidence from lidocaine injection in AVCN. Hearing Research, 1987, 29, 45-53.	2.0	15
67	Nonâ€Linearities and the Representation of Auditory Spectra. International Review of Neurobiology, 2005, 70, 135-168.	2.0	15
68	Stimulus dependent neural correlation: an example from the cochlear nucleus. Experimental Brain Research, 1985, 60, 594-8.	1.5	14
69	Alignment of sound localization cues in the nucleus of the brachium of the inferior colliculus. Journal of Neurophysiology, 2014, 111, 2624-2633.	1.8	14
70	The Internal Organization of the Dorsal Cochlear Nucleus. , 1981, , 127-133.		14
71	SPEECH ENCODING IN THE AUDITORY NERVE: IMPLICATIONS FOR COCHLEAR IMPLANTS. Annals of the New York Academy of Sciences, 1983, 405, 94-113.	3.8	13
72	Functional subgroups of cochlear inner hair cell ribbon synapses differently modulate their EPSC properties in response to stimulation. Journal of Neurophysiology, 2021, 125, 2461-2479.	1.8	13

#	Article	IF	CITATIONS
73	Receptive Field for Dorsal Cochlear Nucleus Neurons at Multiple Sound Levels. Journal of Neurophysiology, 2007, 98, 3505-3515.	1.8	12
74	Neural Coding of Sound with Cochlear Damage. Springer Handbook of Auditory Research, 2012, , 87-135.	0.7	12
75	Recovery of detection probability following sound exposure: comparison of physiology and psychophysics. Journal of the Acoustical Society of America, 1973, 54, 1544-1553.	1.1	11
76	Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction. Frontiers in Neural Circuits, 2013, 7, 90.	2.8	10
77	Consortium of otolaryngology-head and neck surgery journals to collaborate in maintenance of high ethical standards. Head and Neck, 2005, 27, 351-352.	2.0	8
78	Physiological responses to the pulsation threshold paradigm. II: Representations of highâ€pass noise in average rate measures of auditoryâ€nerve fiber discharge. Journal of the Acoustical Society of America, 1989, 85, 243-253.	1.1	7
79	Consortium of Otolaryngology–Head and Neck Surgery Journals to Collaborate in Maintenance of High Ethical Standards. JAMA Otolaryngology, 2005, 131, 381.	1.2	7
80	Consortium of otolaryngology-head and neck surgery journals to collaborate in maintenance of high ethical standards. Otolaryngology - Head and Neck Surgery, 2005, 132, 675-676.	1.9	7
81	NEUROSCIENCE: What's the Best Sound?. Science, 1998, 280, 1402-1403.	12.6	6
82	Processing of Speech in the Peripheral Auditory System. Advances in Psychology, 1981, 7, 75-92.	0.1	4
83	Physiological Acoustics. , 2007, , 429-457.		4
84	Nonlinear temporal receptive fields of neurons in the dorsal cochlear nucleus. Journal of Neurophysiology, 2013, 110, 2414-2425.	1.8	4
85	Resolution of subcomponents of synaptic release from postsynaptic currents in rat hair-cell/auditory-nerve fiber synapses. Journal of Neurophysiology, 2021, 125, 2444-2460.	1.8	4
86	Normal and impaired level encoding: Effects of noise-induced hearing loss on auditory-nerve responses. , 2005, , 40-49.		3
87	Level and spectrum. , 2010, , .		3
88	Which neurons survive the glutamate storm?. Journal of Neurophysiology, 2013, 110, 575-576.	1.8	3
89	Dorsal Cochlear Nucleus of the Rat: Representation of Complex Sounds in Ears Damaged by Acoustic Trauma. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 487-505.	1.8	3

90 Some Aspects of Rate Coding in the Auditory Nerve. , 1986, , 121-128.

ERIC D YOUNG

#	Article	IF	CITATIONS
91	Regularity of Discharge Constrains Models of Ventral Cochlear Nucleus Bushy Cells. , 1993, , 395-410.		3
92	Consortium of Otolaryngology-Head and Neck Surgery Journals to Collaborate in Maintenance of High Ethical Standards. Otology and Neurotology, 2005, 26, 331-332.	1.3	2
93	Inferior colliculus microcircuits. Frontiers in Neural Circuits, 2014, 8, 113.	2.8	2
94	Spectral Edges as Optimal Stimuli for the Dorsal Cochlear Nucleus. , 2007, , 43-50.		2
95	Representation of Acoustic Stimuli in the Presence of Background Sounds: Adaptation in the Auditory Nerve and Cochlear Nucleus. , 1938, , 119-127.		2
96	Consortium of Otolaryngology???Head and Neck Surgery Journals to Collaborate in Maintenance of High Ethical Standards. Laryngoscope, 2005, 115, 761-762.	2.0	1
97	Synaptic Relationships in the Granule-Cell Associated Systems in Dorsal Cochlear Nucleus. , 1997, , 155-166.		1
98	Effects of Masking Noise on the Representation of Vowel Spectra in the Auditory Nerve. , 1981, , 113-118.		1
99	Enhancement in the Marmoset Inferior Colliculus: Neural Correlates of Perceptual "Pop-Out― , 2010, , 155-165.		1
100	Physiological Acoustics. , 2014, , 445-473.		1
101	Organization of the Cochlear Nucleus for Information Processing. , 1987, , 354-370.		1
102	Robust formant tracking in noise. , 2002, , .		0
103	Consortium of Otolaryngology-Head and Neck Surgery Journals to Collaborate in Maintenance of High Ethical Standards. Journal of Voice, 2005, 19, 159-160.	1.5	0
104	Interneurons Which Shape Response Properties in Dorsal Cochlear Nucleus. , 1998, , 101-115.		0