Dongke Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7340427/publications.pdf

Version: 2024-02-01

840776 888059 29 324 11 17 h-index citations g-index papers 30 30 30 315 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced subband light emission from Si quantum dots/SiO ₂ multilayers via phosphorus and boron co-doping. Optics Express, 2022, 30, 12308.	3.4	10
2	Highâ€Efficiency Airâ€Processed Siâ€Based Perovskite Lightâ€Emitting Devices via PMMAâ€TBAPF ₆ Coâ€Doping. Advanced Optical Materials, 2022, 10, .	7.3	9
3	Improved resonant energy transfer and light emission from SnO ₂ nanocrystals and Er ³⁺ embedded in silica films via Yb ³⁺ co-doping. Optical Materials Express, 2022, 12, 3101.	3.0	1
4	Multiple channels to enhance near-infrared emission from SiO ₂ –SnO ₂ :Er ³⁺ films by Ba ²⁺ ion doping. Physical Chemistry Chemical Physics, 2021, 23, 23711-23717.	2.8	6
5	Enhanced Electroluminescence From Sn/Er Co-Doped SiO ₂ Thin Film by Controlling Sn Content. IEEE Photonics Technology Letters, 2021, 33, 1359-1362.	2.5	6
6	Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots. Energies, 2020, 13, 4845.	3.1	9
7	Comparative study on P and B doped nano-crystalline Si multilayers. Applied Surface Science, 2020, 529, 146971.	6.1	13
8	A review: wafer bonding of Si-based semiconductors. Journal Physics D: Applied Physics, 2020, 53, 323001.	2.8	19
9	Low power consumption light emitting device containing TiO ₂ :Er ³⁺ thin film prepared by sol-gel method. Optics Express, 2020, 28, 6064.	3.4	10
10	Variation on the Microstructure and Mechanical Properties of Ti-Al-N Films Induced by RF-ICP Ion Source Enhanced Reactive Nitrogen Plasma Atmosphere. Nanoscale Research Letters, 2020, 15, 119.	5.7	0
11	Improved device performance of Si-based heterojunction solar cells by using phosphorus doped Si nanocrystals embedded in SiC host matrix. AIP Advances, 2019, 9, .	1.3	5
12	Plasmon-enhanced upconversion luminescence in pyrochlore phase Yb x Er2-x Ti2O7 thin film. Nanotechnology, 2019, 30, 085701.	2.6	8
13	Allâ€Inorganic Perovskite Quantum Dots/pâ€5i Heterojunction Lightâ€Emitting Diodes under DC and AC Driving Modes. Advanced Optical Materials, 2018, 6, 1700897.	7.3	39
14	Dual Management of Electrons and Photons to Get Highâ€Performance Light Emitting Devices Based on Si Nanowires and Si Quantum Dots with Al 2 O 3 â€Ag Hybrid Nanostructures. Particle and Particle Systems Characterization, 2018, 35, 1800289.	2.3	0
15	Size-dependent phosphorus doping effect in nanocrystalline-Si-based multilayers. Applied Surface Science, 2018, 461, 66-71.	6.1	8
16	Nanoscale Characterization of Active Doping Concentration in Boronâ€Doped Individual Si Nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800531.	1.8	3
17	Enhanced up-conversion red light emission from rare earth titanium oxide nanocrystals with pyrochlore phase. Optical Materials Express, 2018, 8, 2643.	3.0	13
18	Doping effect in Si nanocrystals. Journal Physics D: Applied Physics, 2018, 51, 233002.	2.8	12

#	Article	IF	CITATION
19	Si nanocrystals-based multilayers for luminescent and photovoltaic device applications. Journal of Semiconductors, 2018, 39, 061007.	3.7	5
20	The phosphorus and boron co-doping behaviors at nanoscale in Si nanocrystals/SiO2 multilayers. Applied Physics Letters, 2017, 110 , .	3.3	24
21	Enhanced carrier mobility in Si nano-crystals via nanoscale phosphorus doping. Applied Surface Science, 2017, 425, 492-496.	6.1	19
22	Doping effect in Si Nanocrystals/SiO ₂ multilayers. Journal of Physics: Conference Series, 2017, 864, 012012.	0.4	0
23	Modulation of surface states by phosphorus to improve the optical properties of ultra-small Si nanocrystals. Nanotechnology, 2017, 28, 475704.	2.6	19
24	Transition of Carrier Transport Behaviors with Temperature in Phosphorus-Doped Si Nanocrystals/SiO2 Multilayers. Nanoscale Research Letters, 2016, 11, 346.	5.7	19
25	Time-resolved and temperature-dependent photoluminescence study on phosphorus doped Si quantum dots/SiO_2 multilayers with ultra-small dot sizes. Optical Materials Express, 2016, 6, 3233.	3.0	20
26	Effects of RF inductively coupled plasma ion source on the microstructure and mechanical properties of Ti–Al–N nanocrystalline films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	3
27	Synthesis and characterization of Cu2S nanoparticles by diethylenetriamine-assisted hydrothermal method. Optik, 2015, 126, 4971-4973.	2.9	21
28	Stabilizing electric switching of ferromagnetism in In2O3:Cu thin films. Journal of Alloys and Compounds, 2015, 650, 912-917.	5.5	3
29	Effects of Al concentrations on the microstructure and mechanical properties of Ti–Al–N films deposited by RF-ICPIS enhanced magnetron sputtering. Journal of Alloys and Compounds, 2014, 609,	5. 5	20