Victor R Edgerton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734024/publications.pdf

Version: 2024-02-01

190 papers 17,596 citations

14124 69 h-index 124 g-index

192 all docs 192 docs citations

192 times ranked

9152 citing authors

#	Article	IF	CITATIONS
1	Noninvasive spinal neuromodulation mitigates symptoms of idiopathic overactive bladder. Bioelectronic Medicine, 2022, 8, 5.	1.0	1
2	Stochastic spinal neuromodulation tunes the intrinsic logic of spinal neural networks. Experimental Neurology, 2022, 355, 114138.	2.0	3
3	Novel Noninvasive Spinal Neuromodulation Strategy Facilitates Recovery of Stepping after Motor Complete Paraplegia. Journal of Clinical Medicine, 2022, 11, 3670.	1.0	14
4	Home-Based SCONETM Therapy Improves Symptoms of Neurogenic Bladder. Neurotrauma Reports, 2021, 2, 165-168.	0.5	4
5	Buspirone Dose-Response on Facilitating Forelimb Functional Recovery in Cervical Spinal Cord Injured Rats. Dose-Response, 2021, 19, 155932582199813.	0.7	2
6	Training the bladder how to void: A noninvasive spinal neuromodulation case study., 2021,,.		3
7	Transcutaneous Spinal Neuromodulation Reorganizes Neural Networks in Patients with Cerebral Palsy. Neurotherapeutics, 2021, 18, 1953-1962.	2.1	18
8	Formation of a novel supraspinal-spinal connectome that relearns the same motor task after complete paralysis. Journal of Neurophysiology, 2021, 126, 957-966.	0.9	3
9	Serotonergic Facilitation of Forelimb Functional Recovery in Rats with Cervical Spinal Cord Injury. Neurotherapeutics, 2021, 18, 1226-1243.	2.1	4
10	Voluntary Modulation of Evoked Responses Generated by Epidural and Transcutaneous Spinal Stimulation in Humans with Spinal Cord Injury. Journal of Clinical Medicine, 2021, 10, 4898.	1.0	13
11	An epidural stimulating interface unveils the intrinsic modulation of electrically motor evoked potentials in behaving rats. Journal of Neurophysiology, 2021, 126, 1635-1641.	0.9	3
12	Using EMG to deliver lumbar dynamic electrical stimulation to facilitate cortico-spinal excitability. Brain Stimulation, 2020, 13, 20-34.	0.7	21
13	Effects of Rehabilitation on Perineural Nets and Synaptic Plasticity Following Spinal Cord Transection. Brain Sciences, 2020, 10, 824.	1.1	10
14	Enabling respiratory control after severe chronic tetraplegia: an exploratory case study. Journal of Neurophysiology, 2020, 124, 774-780.	0.9	20
15	Redundancy and multifunctionality among spinal locomotor networks. Journal of Neurophysiology, 2020, 124, 1469-1479.	0.9	13
16	Acute neuromodulation restores spinally-induced motor responses after severe spinal cord injury. Experimental Neurology, 2020, 327, 113246.	2.0	13
17	Novel Non-invasive Strategy for Spinal Neuromodulation to Control Human Locomotion. Frontiers in Human Neuroscience, 2020, 14, 622533.	1.0	9
18	Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia. Journal of Neuroscience, 2020, 40, 2633-2643.	1.7	76

#	Article	IF	CITATIONS
19	Epidural Spinal Cord Stimulation Improves Motor Function in Rats With Chemically Induced Parkinsonism. Neurorehabilitation and Neural Repair, 2019, 33, 1029-1039.	1.4	8
20	Noninvasive spinal neuromodulation to map and augment lower urinary tract function in rhesus macaques. Experimental Neurology, 2019, 322, 113033.	2.0	18
21	Tetraplegia to Overground Stepping Using Non-Invasive Spinal Neuromodulation. , 2019, , .		7
22	Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Science Advances, 2019, 5, eaav5086.	4.7	60
23	Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat. Journal of Neurophysiology, 2019, 122, 585-600.	0.9	13
24	Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection. Neurorehabilitation and Neural Repair, 2019, 33, 225-231.	1.4	7
25	Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis. Journal of Neurotrauma, 2019, 36, 1451-1460.	1.7	56
26	Self-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 1435-1450.	1.7	143
27	Novel Activity Detection Algorithm to Characterize Spontaneous Stepping During Multimodal Spinal Neuromodulation After Mid-Thoracic Spinal Cord Injury in Rats. Frontiers in Systems Neuroscience, 2019, 13, 82.	1.2	2
28	Non-Invasive Activation of Cervical Spinal Networks after Severe Paralysis. Journal of Neurotrauma, 2018, 35, 2145-2158.	1.7	138
29	A Multi-modality Approach Towards Elucidation of the Mechanism for Human Achilles Tendon Bending During Passive Ankle Rotation. Scientific Reports, 2018, 8, 4319.	1.6	14
30	An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 446-451.	1.7	70
31	Vestibulospinal and Corticospinal Modulation of Lumbosacral Network Excitability in Human Subjects. Frontiers in Physiology, 2018, 9, 1746.	1.3	11
32	Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nature Medicine, 2018, 24, 1677-1682.	15.2	416
33	Electrical Spinal Stimulation, and Imagining of Lower Limb Movements to Modulate Brain-Spinal Connectomes That Control Locomotor-Like Behavior. Frontiers in Physiology, 2018, 9, 1196.	1.3	21
34	Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients. Scientific Reports, 2018, 8, 15546.	1.6	63
35	Trunk Stability Enabled by Noninvasive Spinal Electrical Stimulation after Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 2540-2553.	1.7	96
36	Transcutaneous Electrical Spinal Stimulation Promotes Long-Term Recovery of Upper Extremity Function in Chronic Tetraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1272-1278.	2.7	143

3

#	Article	lF	CITATIONS
37	Is the vagus nerve our neural connectome?. ELife, 2018, 7, .	2.8	8
38	Non-invasive Neuromodulation of Spinal Cord Restores Lower Urinary Tract Function After Paralysis. Frontiers in Neuroscience, 2018, 12, 432.	1.4	58
39	Evidence of axon connectivity across a spinal cord transection in rats treated with epidural stimulation and motor training combined with olfactory ensheathing cell transplantation. Experimental Neurology, 2018, 309, 119-133.	2.0	31
40	Noninvasive neurophysiological mapping of the lower urinary tract in adult and aging rhesus macaques. Journal of Neurophysiology, 2018, 119, 1521-1527.	0.9	16
41	Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials, 2017, 123, 63-76.	5.7	75
42	Feed-Forwardness of Spinal Networks in Posture and Locomotion. Neuroscientist, 2017, 23, 441-453.	2.6	33
43	Electrical neuromodulation of the cervical spinal cord facilitates forelimb skilled function recovery in spinal cord injured rats. Experimental Neurology, 2017, 291, 141-150.	2.0	63
44	Enabling Task-Specific Volitional Motor Functions via Spinal Cord Neuromodulation in a Human With Paraplegia. Mayo Clinic Proceedings, 2017, 92, 544-554.	1.4	189
45	Spinal and sensory neuromodulation of spinal neuronal networks in humans. Human Physiology, 2017, 43, 492-500.	0.1	5
46	Generalized convulsive seizures are associated with ketamine anesthesia in a rhesus macaque ($\langle i \rangle$ Macaca mulatta $\langle i \rangle$) undergoing urodynamic studies and transcutaneous spinal cord stimulation. Journal of Medical Primatology, 2017, 46, 359-363.	0.3	2
47	Weight Bearing Over-ground Stepping in an Exoskeleton with Non-invasive Spinal Cord Neuromodulation after Motor Complete Paraplegia. Frontiers in Neuroscience, 2017, 11, 333.	1.4	131
48	Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Frontiers in Neuroscience, 2016, 10, 584.	1.4	121
49	PPARÎ' preserves a high resistance to fatigue in the mouse medial gastrocnemius after spinal cord transection. Muscle and Nerve, 2016, 53, 287-296.	1.0	6
50	Neuromodulation of the neural circuits controlling the lower urinary tract. Experimental Neurology, 2016, 285, 182-189.	2.0	34
51	Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients. Neurorehabilitation and Neural Repair, 2016, 30, 951-962.	1.4	123
52	Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury. Journal of Neurotrauma, 2016, 33, 1709-1723.	1.7	40
53	Integration of sensory, spinal, and volitional descending inputs in regulation of human locomotion. Journal of Neurophysiology, 2016, 116, 98-105.	0.9	44
54	Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration. Journal of Neuroscience, 2016, 36, 6269-6286.	1.7	76

#	Article	IF	CITATIONS
55	Multisystem Neurorehabilitation in Rodents with Spinal Cord Injury. , 2016, , 59-77.		1
56	Physiology of Motor Deficits and the Potential of Motor Recovery After a Spinal Cord Injury. , 2016, , 13-35.		0
57	Spinal neuronal activation during locomotorâ€like activity enabled by epidural stimulation and 5â€hydroxytryptamine agonists in spinal rats. Journal of Neuroscience Research, 2015, 93, 1229-1239.	1.3	16
58	Plasticity of subcortical pathways promote recovery of skilled hand function in rats after corticospinal and rubrospinal tract injuries. Experimental Neurology, 2015, 266, 112-119.	2.0	49
59	Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord. Neuroscience Letters, 2015, 609, 229-234.	1.0	57
60	Iron â€ElectriRx' man: Overground stepping in an exoskeleton combined with noninvasive spinal cord stimulation after paralysis. , 2015, 2015, 1124-7.		16
61	Reply: No dawn yet of a new age in spinal cord rehabilitation. Brain, 2015, 138, e363-e363.	3.7	6
62	Electrophysiological biomarkers of neuromodulatory strategies to recover motor function after spinal cord injury. Journal of Neurophysiology, 2015, 113, 3386-3396.	0.9	22
63	Transcutaneous electrical spinal-cord stimulation in humans. Annals of Physical and Rehabilitation Medicine, 2015, 58, 225-231.	1.1	176
64	Noninvasive Reactivation of Motor Descending Control after Paralysis. Journal of Neurotrauma, 2015, 32, 1968-1980.	1.7	236
65	Electrophysiological mapping of rat sensorimotor lumbosacral spinal networks after complete paralysisa~†. Progress in Brain Research, 2015, 218, 199-212.	0.9	4
66	Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats. Journal of Neuroscience Methods, 2015, 247, 50-57.	1.3	35
67	An Active Learning Algorithm for Control of Epidural Electrostimulation. IEEE Transactions on Biomedical Engineering, 2015, 62, 2443-2455.	2.5	14
68	Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine, 2015, 7, 302ra134.	5.8	148
69	Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans. Journal of Applied Physiology, 2015, 118, 1364-1374.	1.2	99
70	Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation. Brain Research, 2015, 1600, 84-92.	1.1	45
71	Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury. Brain Research, 2015, 1619, 124-138.	1.1	16
72	Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. Journal of Neurophysiology, 2015, 113, 834-842.	0.9	120

#	Article	IF	CITATIONS
73	Who is who after spinal cord injury and repair? Can the brain stem descending motor pathways take control of skilled hand motor function?. Neural Regeneration Research, 2015, 10, 1735.	1.6	2
74	Cervical Epidural Stimulation Elicits Evoked Potentials and Modulates Diaphragm EMG. FASEB Journal, 2015, 29, 656.4.	0.2	0
75	Initiation of Bladder Voiding with Epidural Stimulation in Paralyzed, Step Trained Rats. PLoS ONE, 2014, 9, e108184.	1.1	56
76	Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. Journal of Neurophysiology, 2014, 111, 1088-1099.	0.9	136
77	Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain, 2014, 137, 1394-1409.	3.7	618
78	Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury. Brain, 2013, 136, 3362-3377.	3.7	79
79	Interaponeurosis shear strain modulates behavior of myotendinous junction of the human triceps surae. Physiological Reports, 2013, 1, e00147.	0.7	15
80	Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 2.	2.4	94
81	Sub-threshold spinal cord stimulation facilitates spontaneous motor activity in spinal rats. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 108.	2.4	60
82	Neuromodulation of motor-evoked potentials during stepping in spinal rats. Journal of Neurophysiology, 2013, 110, 1311-1322.	0.9	39
83	Enhanced spontaneous cage activity induced by continuous low intensity spinal cord epidural stimulation in complete spinal cord transected adult rats. FASEB Journal, 2013, 27, 1132.29.	0.2	0
84	Accommodation of the Spinal Cat to a Tripping Perturbation. Frontiers in Physiology, 2012, 3, 112.	1.3	18
85	Somatosensory control of balance during locomotion in decerebrated cat. Journal of Neurophysiology, 2012, 107, 2072-2082.	0.9	70
86	Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 38.	2.4	25
87	Establishing the NeuroRecovery Network: Multisite Rehabilitation Centers That Provide Activity-Based Therapies and Assessments for Neurologic Disorders. Archives of Physical Medicine and Rehabilitation, 2012, 93, 1498-1507.	0.5	55
88	Balance and Ambulation Improvements in Individuals With Chronic Incomplete Spinal Cord Injury Using Locomotor Training–Based Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2012, 93, 1508-1517.	0.5	170
89	Basic Concepts of Activity-Based Interventions for Improved Recovery of Motor Function After Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2012, 93, 1487-1497.	0.5	119
90	Effects of Diet and/or Exercise in Enhancing Spinal Cord Sensorimotor Learning. PLoS ONE, 2012, 7, e41288.	1.1	19

#	Article	IF	Citations
91	Animal Models of Neurologic Disorders: A Nonhuman Primate Model of Spinal Cord Injury. Neurotherapeutics, 2012, 9, 380-392.	2.1	80
92	Neurobiological perspective of spasticity as occurs after a spinal cord injury. Experimental Neurology, 2012, 235, 116-122.	2.0	37
93	Quantitative metrics of spinal cord injury recovery in the rat using motion capture, electromyography and ground reaction force measurement. Journal of Neuroscience Methods, 2012, 206, 65-72.	1.3	14
94	Variability in step training enhances locomotor recovery after a spinal cord injury. European Journal of Neuroscience, 2012, 36, 2054-2062.	1.2	76
95	Multisystem Neurorehabilitation in Rodents with Spinal Cord Injury. , 2012, , 3-21.		0
96	A new age for rehabilitation. European Journal of Physical and Rehabilitation Medicine, 2012, 48, 99-109.	1.1	29
97	Application of a Rat Hindlimb Model: A Prediction of Force Spaces Reachable Through Stimulation of Nerve Fascicles. IEEE Transactions on Biomedical Engineering, 2011, 58, 3328-3338.	2.5	21
98	A parylene-based microelectrode array implant for spinal cord stimulation in rats., 2011, 2011, 1007-1010.		17
99	Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection. Experimental Neurology, 2011, 229, 109-119.	2.0	57
100	Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet, The, 2011, 377, 1938-1947.	6.3	964
101	Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Review of Neurotherapeutics, 2011, 11, 1351-1353.	1.4	94
102	Axon Regeneration Can Facilitate or Suppress Hindlimb Function after Olfactory Ensheathing Glia Transplantation. Journal of Neuroscience, 2011, 31, 4298-4310.	1.7	61
103	Locomotor Training Maintains Normal Inhibitory Influence on Both Alpha- and Gamma-Motoneurons after Neonatal Spinal Cord Transection. Journal of Neuroscience, 2011, 31, 26-33.	1.7	59
104	Controlling Specific Locomotor Behaviors through Multidimensional Monoaminergic Modulation of Spinal Circuitries. Journal of Neuroscience, 2011, 31, 9264-9278.	1.7	132
105	Phase-Dependent Modulation of Percutaneously Elicited Multisegmental Muscle Responses After Spinal Cord Injury. Journal of Neurophysiology, 2010, 103, 2808-2820.	0.9	7 3
106	Spasticity: a switch from inhibition to excitation. Nature Medicine, 2010, 16, 270-271.	15.2	20
107	Why Variability Facilitates Spinal Learning. Journal of Neuroscience, 2010, 30, 10720-10726.	1.7	80
108	Novel and Direct Access to the Human Locomotor Spinal Circuitry. Journal of Neuroscience, 2010, 30, 3700-3708.	1.7	108

#	Article	IF	Citations
109	Improvement of gait patterns in step-trained, complete spinal cord-transected rats treated with a peripheral nerve graft and acidic fibroblast growth factor. Experimental Neurology, 2010, 224, 429-437.	2.0	19
110	Activity-Dependent Plasticity of Spinal Locomotion. Exercise and Sport Sciences Reviews, 2009, 37, 171-178.	1.6	46
111	Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain, 2009, 132, 1426-1440.	3.7	149
112	Propriospinal Bypass of the Serotonergic System That Can Facilitate Stepping. Journal of Neuroscience, 2009, 29, 5681-5689.	1.7	45
113	Recovery of control of posture and locomotion after a spinal cord injury: solutions staring us in the face. Progress in Brain Research, 2009, 175, 393-418.	0.9	66
114	Changes in GABAA receptor subunit gamma 2 in extensor and flexor motoneurons and astrocytes after spinal cord transection and motor training. Brain Research, 2009, 1273, 9-17.	1.1	38
115	Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nature Neuroscience, 2009, 12, 1333-1342.	7.1	620
116	Spinal learning in the adult mouse using the Horridge paradigm. Journal of Neuroscience Methods, 2009, 182, 250-254.	1.3	16
117	Robotic training and spinal cord plasticity. Brain Research Bulletin, 2009, 78, 4-12.	1.4	99
118	Distribution and Localization of 5-HT _{1A} Receptors in the Rat Lumbar Spinal Cord after Transection and Deafferentation. Journal of Neurotrauma, 2009, 26, 575-584.	1.7	37
119	Enhanced Motor Function by Training in Spinal Cord Contused Rats Following Radiation Therapy. PLoS ONE, 2009, 4, e6862.	1.1	21
120	A three-dimensional model of the rat hindlimb: Musculoskeletal geometry and muscle moment arms. Journal of Biomechanics, 2008, 41, 610-619.	0.9	94
121	Does elimination of afferent input modify the changes in rat motoneurone properties that occur following chronic spinal cord transection?. Journal of Physiology, 2008, 586, 529-544.	1.3	50
122	Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nature Medicine, 2008, 14, 69-74.	15.2	690
123	Training locomotor networks. Brain Research Reviews, 2008, 57, 241-254.	9.1	268
124	Dose dependence of the 5-HT agonist quipazine in facilitating spinal stepping in the rat with epidural stimulation. Neuroscience Letters, 2008, 438, 281-285.	1.0	54
125	Epidural stimulation: Comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Experimental Neurology, 2008, 209, 417-425.	2.0	162
126	Step Training Reinforces Specific Spinal Locomotor Circuitry in Adult Spinal Rats. Journal of Neuroscience, 2008, 28, 7370-7375.	1.7	157

#	Article	IF	Citations
127	OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats. Brain, 2008, 131, 264-276.	3.7	107
128	Epidural Stimulation Induced Modulation of Spinal Locomotor Networks in Adult Spinal Rats. Journal of Neuroscience, 2008, 28, 6022-6029.	1.7	147
129	Facilitation of Stepping with Epidural Stimulation in Spinal Rats: Role of Sensory Input. Journal of Neuroscience, 2008, 28, 7774-7780.	1.7	144
130	Changes in Motoneuron Properties and Synaptic Inputs Related to Step Training after Spinal Cord Transection in Rats. Journal of Neuroscience, 2007, 27, 4460-4471.	1.7	136
131	Two chronic motor training paradigms differentially influence acute instrumental learning in spinally transected rats. Behavioural Brain Research, 2007, 180, 95-101.	1.2	37
132	Locomotor Ability in Spinal Rats Is Dependent on the Amount of Activity Imposed on the Hindlimbs during Treadmill Training. Journal of Neurotrauma, 2007, 24, 1000-1012.	1.7	112
133	Epidural Spinal Cord Stimulation Plus Quipazine Administration Enable Stepping in Complete Spinal Adult Rats. Journal of Neurophysiology, 2007, 98, 2525-2536.	0.9	130
134	Rat \hat{l}_{\pm} - and \hat{l}^3 -motoneuron soma size and succinate dehydrogenase activity are independent of neuromuscular activity level. Muscle and Nerve, 2007, 36, 234-241.	1.0	17
135	Wheel running following spinal cord injury improves locomotor recovery and stimulates serotonergic fiber growth. European Journal of Neuroscience, 2007, 25, 1931-1939.	1.2	83
136	Rehabilitative Therapies after Spinal Cord Injury. Journal of Neurotrauma, 2006, 23, 560-570.	1.7	70
137	Implications of Assist-As-Needed Robotic Step Training after a Complete Spinal Cord Injury on Intrinsic Strategies of Motor Learning. Journal of Neuroscience, 2006, 26, 10564-10568.	1.7	299
138	Neurobiology of Exercise. Obesity, 2006, 14, 345-356.	1.5	704
139	Tools for understanding and optimizing robotic gait training. Journal of Rehabilitation Research and Development, 2006, 43, 657.	1.6	124
140	Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. Journal of Neuroscience Methods, 2006, 157, 253-263.	1.3	134
141	Plasticity of Spinal Cord Reflexes After a Complete Transection in Adult Rats: Relationship to Stepping Ability. Journal of Neurophysiology, 2006, 96, 1699-1710.	0.9	189
142	Hindlimb loading determines stepping quantity and quality following spinal cord transection. Brain Research, 2005, 1050, 180-189.	1.1	81
143	A robotic device for studying rodent locomotion after spinal cord injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13, 497-506.	2.7	35
144	Spinal Cord-Transected Mice Learn to Step in Response to Quipazine Treatment and Robotic Training. Journal of Neuroscience, 2005, 25, 11738-11747.	1.7	129

#	Article	IF	CITATIONS
145	Kinematic and EMG Determinants in Quadrupedal Locomotion of a Non-Human Primate (Rhesus). Journal of Neurophysiology, 2005, 93, 3127-3145.	0.9	135
146	Does daily activity level determine muscle phenotype?. Journal of Experimental Biology, 2005, 208, 3761-3770.	0.8	32
147	Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain, 2005, 128, 2338-2358.	3.7	121
148	Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Experimental Neurology, 2005, 193, 411-419.	2.0	235
149	PLASTICITY OF THE SPINAL NEURAL CIRCUITRY AFTER INJURY. Annual Review of Neuroscience, 2004, 27, 145-167.	5.0	525
150	Afferent Input Modulates Neurotrophins and Synaptic Plasticity in the Spinal Cord. Journal of Neurophysiology, 2004, 92, 3423-3432.	0.9	71
151	Locomotor Recovery Potential after Spinal Cord Injury. , 2004, , 53-91.		3
152	Voluntary exercise increases neurotrophin-3 and its receptor TrkC in the spinal cord. Brain Research, 2003, 987, 93-99.	1.1	85
153	Chapter 11 Use of robotics in assessing the adaptive capacity of the rat lumbar spinal cord. Progress in Brain Research, 2002, 137, 141-149.	0.9	44
154	Voluntary Exercise Induces a BDNF-Mediated Mechanism That Promotes Neuroplasticity. Journal of Neurophysiology, 2002, 88, 2187-2195.	0.9	578
155	Using robotics to teach the spinal cord to walk. Brain Research Reviews, 2002, 40, 267-273.	9.1	62
156	Use-Dependent Modulation of Inhibitory Capacity in the Feline Lumbar Spinal Cord. Journal of Neuroscience, 2002, 22, 3130-3143.	1.7	188
157	Mechanical properties of rat soleus after long-term spinal cord transection. Journal of Applied Physiology, 2002, 93, 1487-1497.	1.2	89
158	Paralysis recovery in humans and model systems. Current Opinion in Neurobiology, 2002, 12, 658-667.	2.0	69
159	How selective is the reinnervation of skeletal muscle fibers?. Muscle and Nerve, 2002, 25, 765-767.	1.0	3
160	Influences of electromechanical events in defining skeletal muscle properties. Muscle and Nerve, 2002, 26, 238-251.	1.0	31
161	Activity-independent neural influences on cat soleus motor unit phenotypes. Muscle and Nerve, 2002, 26, 252-264.	1.0	15
162	Retraining the injured spinal cord. Journal of Physiology, 2001, 533, 15-22.	1.3	332

#	Article	IF	CITATIONS
163	Neural Darwinism in the Mammalian Spinal Cord. , 2001, , 185-206.		14
164	Sensorimotor adaptations to microgravity in humans. Journal of Experimental Biology, 2001, 204, 3217-24.	0.8	33
165	Increased expression of glutamate decarboxylase (GAD67) in feline lumbar spinal cord after complete thoracic spinal cord transection. Journal of Neuroscience Research, 2000, 60, 219-230.	1.3	104
166	Persistence of myosin heavy chain-based fiber types in innervated but silenced rat fast muscle., 2000, 23, 735-747.		27
167	Invited Review: Gravitational biology of the neuromotor systems: a perspective to the next era. Journal of Applied Physiology, 2000, 89, 1224-1231.	1.2	31
168	Persistence of myosin heavy chain-based fiber types in innervated but silenced rat fast muscle., 2000, 23, 735.		3
169	Effects of Spaceflight on Rhesus Quadrupedal Locomotion After Return to 1G. Journal of Neurophysiology, 1999, 81, 2451-2463.	0.9	69
170	Differential response of fast hindlimb extensor and flexor muscles to exercise in adult spinalized cats., 1999, 22, 230-241.		46
171	Myonuclear domains in muscle adaptation and disease. , 1999, 22, 1350-1360.		374
172	Persistence of hybrid fibers in rat soleus after spinal cord transection., 1999, 255, 188-201.		70
173	Effects of inactivity on myosin heavy chain composition and size of rat soleus fibers., 1998, 21, 375-389.		92
174	Training effects on soleus of cats spinal cord transected (T12-13) as adults. Muscle and Nerve, 1998, 21, 63-71.	1.0	70
175	Hypertrophy of rat plantaris muscle fibers after voluntary running with increasing loads. Journal of Applied Physiology, 1998, 84, 2183-2189.	1.2	81
176	Effects of inactivity on myosin heavy chain composition and size of rat soleus fibers., 1998, 21, 375.		4
177	Does Motor Learning Occur in the Spinal Cord?. Neuroscientist, 1997, 3, 287-294.	2.6	56
178	Human Lumbosacral Spinal Cord Interprets Loading During Stepping. Journal of Neurophysiology, 1997, 77, 797-811.	0.9	559
179	Response of the Neuromuscular Unit to Spaceflight. Exercise and Sport Sciences Reviews, 1996, 24, 399???426.	1.6	59
180	Limited fiber type grouping in self-reinnervation cat tibialis anterior muscles., 1996, 19, 1320-1327.		6

#	Article	IF	CITATIONS
181	Chapter 2 Neuromuscular Adaptation to Actual and Simulated Weightlessness. Advances in Space Biology and Medicine, 1994, 4, 33-67.	0.5	55
182	Can the mammalian lumbar spinal cord learn a motor task?. Medicine and Science in Sports and Exercise, 1994, 26, 1491???1497.	0.2	161
183	Innervation patterns in the cat tibialis anterior six months after self-reinnervation. Muscle and Nerve, 1993, 16, 379-391.	1.0	17
184	Adaptability of the oxidative capacity of motoneurons. Brain Research, 1992, 570, 1-10.	1.1	57
185	Enzyme and size profiles in chronically inactive cat soleus muscle fibers. Muscle and Nerve, 1992, 15, 27-36.	1.0	35
186	Coordination of motor pools controlling the ankle musculature in adult spinal cats during treadmill walking. Brain Research, 1991, 555, 202-214.	1.1	40
187	A Physiological Basis for the Development of Rehabilitative Strategies for Spinally Injured Patients. The Journal of the American Paraplegia Society, 1991, 14, 150-157.	0.5	39
188	8 The Plasticity of Skeletal Muscle. Exercise and Sport Sciences Reviews, 1991, 19, 269???312.	1.6	131
189	Spatial distribution of muscle fibers within the territory of a motor unit. Muscle and Nerve, 1990, 13, 1133-1145.	1.0	85
190	Motor Unit Properties and Selective Involvement In Movement. Exercise and Sport Sciences Reviews, 1975, 3, 31???82.	1.6	210