Qing Quan Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7340176/publications.pdf Version: 2024-02-01

Οίνς Ομαν Γιανς

#	Article	IF	CITATIONS
1	Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading. Journal of Constructional Steel Research, 2009, 65, 2186-2196.	3.9	211
2	Performance-based analysis of concrete-filled steel tubular beam–columns, Part I: Theory and algorithms. Journal of Constructional Steel Research, 2009, 65, 363-372.	3.9	165
3	Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression. Engineering Structures, 2017, 131, 639-650.	5.3	107
4	Strength Analysis of Steel–Concrete Composite Beams in Combined Bending and Shear. Journal of Structural Engineering, 2005, 131, 1593-1600.	3.4	92
5	Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression. Thin-Walled Structures, 2013, 73, 252-263.	5.3	90
6	TOPOLOGY OPTIMIZATION OF STRUCTURES UNDER DYNAMIC RESPONSE CONSTRAINTS. Journal of Sound and Vibration, 2000, 234, 177-189.	3.9	87
7	Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects. Journal of Constructional Steel Research, 2006, 62, 581-591.	3.9	86
8	Nonlinear analysis of rectangular concrete-filled double steel tubular short columns incorporating local buckling. Engineering Structures, 2018, 175, 13-26.	5.3	85
9	Nonlinear analysis of axially loaded circular concrete-filled stainless steel tubular short columns. Journal of Constructional Steel Research, 2014, 101, 9-18.	3.9	84
10	High strength circular concrete-filled steel tubular slender beam–columns, Part I: Numerical analysis. Journal of Constructional Steel Research, 2011, 67, 164-171.	3.9	79
11	Optimal Topology Design of Bracing Systems for Multistory Steel Frames. Journal of Structural Engineering, 2000, 126, 823-829.	3.4	76
12	Local buckling of steel plates in concrete-filled thin-walled steel tubular beam–columns. Journal of Constructional Steel Research, 2007, 63, 396-405.	3.9	76
13	Theoretical study on the post-local buckling of steel plates in concrete-filled box columns. Computers and Structures, 2000, 75, 479-490.	4.4	73
14	Behaviour of circular concrete-filled lean duplex stainless steel–carbon steel tubular short columns. Engineering Structures, 2013, 56, 83-94.	5.3	70
15	Numerical analysis of axially loaded circular high strength concrete-filled double steel tubular short columns. Thin-Walled Structures, 2019, 138, 105-116.	5.3	68
16	A performance-based optimization method for topology design of continuum structures with mean compliance constraints. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 1471-1489.	6.6	63
17	Local Buckling of Steel Plates in Double Skin Composite Panels under Biaxial Compression and Shear. Journal of Structural Engineering, 2004, 130, 443-451.	3.4	61
18	Ultimate strength of continuous composite beams in combined bending and shear. Journal of Constructional Steel Research, 2004, 60, 1109-1128.	3.9	60

QING QUAN LIANG

#	Article	IF	CITATIONS
19	Nonlinear analysis of circular concrete-filled steel tubular short columns under eccentric loading. Journal of Constructional Steel Research, 2010, 66, 159-169.	3.9	53
20	Performance-Based Optimization for Strut-Tie Modeling of Structural Concrete. Journal of Structural Engineering, 2002, 128, 815-823.	3.4	49
21	Performance-based analysis of concrete-filled steel tubular beam–columns, Part II: Verification and applications. Journal of Constructional Steel Research, 2009, 65, 351-362.	3.9	48
22	Numerical simulation of high strength circular double-skin concrete-filled steel tubular slender columns. Engineering Structures, 2018, 168, 205-217.	5.3	47
23	A level set method for topology optimization of continuum structures with bounded design domains. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 1447-1465.	6.6	45
24	High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part I: Modeling. Journal of Constructional Steel Research, 2012, 70, 377-384.	3.9	45
25	Numerical analysis of high-strength concrete-filled steel tubular slender beam-columns under cyclic loading. Journal of Constructional Steel Research, 2014, 92, 183-194.	3.9	45
26	Optimal topology selection of continuum structures with displacement constraints. Computers and Structures, 2000, 77, 635-644.	4.4	44
27	Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, Part I: Multiscale simulation. Journal of Constructional Steel Research, 2012, 75, 64-71.	3.9	42
28	Nonlinear analysis of biaxially loaded rectangular concrete-filled stainless steel tubular slender beam-columns. Engineering Structures, 2017, 140, 120-133.	5.3	41
29	Behavior of eccentrically loaded double circular steel tubular short columns filled with concrete. Engineering Structures, 2019, 201, 109790.	5.3	39
30	Experimental and numerical studies of square concrete-filled double steel tubular short columns under eccentric loading. Engineering Structures, 2019, 197, 109419.	5.3	38
31	Strength and ductility of high strength concrete-filled steel tubular beam–columns. Journal of Constructional Steel Research, 2009, 65, 687-698.	3.9	35
32	Behaviour of circular concrete-filled lean duplex stainless steel tubular short columns. Thin-Walled Structures, 2013, 68, 113-123.	5.3	35
33	High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part II: Behavior. Journal of Constructional Steel Research, 2012, 70, 368-376.	3.9	34
34	High strength circular concrete-filled steel tubular slender beam–columns, Part II: Fundamental behavior. Journal of Constructional Steel Research, 2011, 67, 172-180.	3.9	33
35	Local-global interaction buckling of square high strength concrete-filled double steel tubular slender beam-columns. Thin-Walled Structures, 2019, 143, 106244.	5.3	32
36	Numerical analysis of circular double-skin concrete-filled stainless steel tubular short columns under axial loading. Structures, 2020, 24, 754-765.	3.6	26

Qing Quan Liang

#	Article	IF	CITATIONS
37	Nonlinear analysis of short concrete-filled steel tubular beam–columns under axial load and biaxial bending. Journal of Constructional Steel Research, 2008, 64, 295-304.	3.9	25
38	Nonlinear analysis of circular high strength concrete-filled stainless steel tubular slender beam-columns. Engineering Structures, 2017, 130, 1-13.	5.3	25
39	Numerical simulations of circular high strength concrete-filled aluminum tubular short columns incorporating new concrete confinement model. Thin-Walled Structures, 2020, 147, 106492.	5.3	25
40	Parametric Study on the Structural Behaviour of Steel Plates in Concrete-Filled Fabricated Thin-Walled Box Columns. Advances in Structural Engineering, 1998, 2, 57-71.	2.4	24
41	Experimental and numerical investigations of eccentrically loaded rectangular concrete-filled double steel tubular columns. Journal of Constructional Steel Research, 2020, 167, 105949.	3.9	23
42	Computational simulation of eccentrically loaded circular thin-walled concrete-filled double steel tubular slender columns. Engineering Structures, 2020, 213, 110571.	5.3	23
43	Performance-Based Optimization: A Review. Advances in Structural Engineering, 2007, 10, 739-753.	2.4	22
44	Computational simulation of elliptical concrete-filled steel tubular short columns including new confinement model. Journal of Constructional Steel Research, 2020, 174, 106294.	3.9	22
45	Simulation of uniaxially compressed square ultra-high-strength concrete-filled steel tubular slender beam-columns. Engineering Structures, 2021, 232, 111795.	5.3	22
46	Local buckling of steel plates in concrete-filled steel tubular columns at elevated temperatures. Engineering Structures, 2018, 168, 108-118.	5.3	20
47	Numerical analysis of axially loaded rectangular concrete-filled steel tubular short columns at elevated temperatures. Engineering Structures, 2019, 180, 89-102.	5.3	20
48	Numerical analysis of thin-walled round-ended concrete-filled steel tubular short columns including local buckling effects. Structures, 2020, 28, 181-196.	3.6	20
49	Nonlinear analysis of square concrete-filled double steel tubular slender columns incorporating preload effects. Engineering Structures, 2020, 207, 110272.	5.3	19
50	NUMERICAL ANALYSIS OF CIRCULAR CONCRETE-FILLED STEEL TUBULAR SLENDER BEAM-COLUMNS WITH PRELOAD EFFECTS. International Journal of Structural Stability and Dynamics, 2013, 13, 1250065.	2.4	17
51	Numerical study of circular double-skin concrete-filled aluminum tubular stub columns. Engineering Structures, 2019, 197, 109418.	5.3	16
52	Axisymmetric simulation of circular concrete-filled double-skin steel tubular short columns incorporating outer stainless-steel tube. Engineering Structures, 2021, 227, 111416.	5.3	16
53	Behavior of biaxially-loaded rectangular concrete-filled steel tubular slender beam-columns with preload effects. Thin-Walled Structures, 2014, 79, 166-177.	5.3	15
54	Numerical modeling of octagonal concrete-filled steel tubular short columns accounting for confinement effects. Engineering Structures, 2021, 226, 111405.	5.3	15

QING QUAN LIANG

#	Article	IF	CITATIONS
55	Behavior of circular concrete-filled double steel tubular slender beam-columns including preload effects. Engineering Structures, 2020, 220, 111010.	5.3	14
56	Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, part II: Parametric study. Journal of Constructional Steel Research, 2015, 110, 200-207.	3.9	13
57	Experimental and numerical investigations into the behavior of circular concrete-filled double steel tubular slender columns. Engineering Structures, 2022, 267, 114644.	5.3	12
58	Numerical modeling of rectangular concrete-filled double-skin steel tubular columns with outer stainless-steel skin. Journal of Constructional Steel Research, 2021, 179, 106504.	3.9	10
59	Experimental and numerical studies of axially loaded square concreteâ€encased concreteâ€filled largeâ€diameter steel tubular short columns. Structural Concrete, 2022, 23, 2748-2769.	3.1	10
60	Fiber-based computational modeling of rectangular double-skin concrete-filled steel tubular short columns including local buckling. Engineering Structures, 2021, 248, 113268.	5.3	9
61	Inelastic stability analysis of high strength rectangular concrete-filled steel tubular slender beam-columns. Interaction and Multiscale Mechanics, 2012, 5, 91-104.	0.4	9
62	Fiber element modeling of circular double-skin concrete-filled stainless-carbon steel tubular columns under axial load and bending. Advances in Structural Engineering, 2022, 25, 1114-1135.	2.4	9
63	Fiber element simulation of interaction behavior of local and global buckling in axially loaded rectangular concrete-filled steel tubular slender columns under fire exposure. Thin-Walled Structures, 2019, 145, 106403.	5.3	8
64	Numerical analysis of rectangular double-skin concrete-filled steel tubular slender columns incorporating interaction buckling. Engineering Structures, 2021, 245, 112960.	5.3	8
65	Behavior and design of thin-walled double-skin concrete-filled rectangular steel tubular short and slender columns with external stainless-steel tube incorporating local buckling effects. Thin-Walled Structures, 2022, 170, 108552.	5.3	8
66	Numerical analysis of square <scp>concreteâ€filled doubleâ€skin</scp> tubular columns with outer <scp>stainlessâ€steel</scp> tube. Structural Concrete, 2022, 23, 2968-2985.	3.1	8
67	Fire-Resistance of Eccentrically Loaded Rectangular Concrete-Filled Steel Tubular Slender Columns Incorporating Interaction of Local and Global Buckling. International Journal of Structural Stability and Dynamics, 2019, 19, 1950085.	2.4	6
68	Numerical investigations of circular double-skin steel tubular slender beam-columns filled with ultra-high-strength concrete. Engineering Structures, 2022, 254, 113814.	5.3	6
69	Analysis and Design of Steel and Composite Structures. , 0, , .		5
70	Strength of Concrete-Filled Steel Box Columns with Buckling Effects. Australian Journal of Structural Engineering, 2007, 7, 145-155.	1.1	4
71	Nonlinear post-fire simulation of concentrically loaded rectangular thin-walled concrete-filled steel tubular short columns accounting for progressive local buckling. Thin-Walled Structures, 2019, 145, 106423.	5.3	3
72	Numerical analysis of concentrically loaded hexagonal concrete-filled steel tubular short columns incorporating concrete confinement. Advances in Structural Engineering, 2021, 24, 3472-3487.	2.4	2

QING QUAN LIANG

#	Article	IF	CITATIONS
73	A Topological Optimization Method Considering Stress Constraints. , 2008, , .		1
74	Local and post-local buckling of double skin composite panels. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2003, 156, 111-119.	0.8	1
75	Closure to "Strength Analysis of Steel-Concrete Composite Beams in Combined Bending and Shear―by Qing Quan Liang, Brian Uy, Mark A. Bradford, and Hamid R. Ronagh. Journal of Structural Engineering, 2007, 133, 309-310.	3.4	0
76	Structural Design Optimization. Advances in Structural Engineering, 2007, 10, i-ii.	2.4	0
77	Performance-based shape optimization of continuum structures. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012194.	0.6	0
78	Nonlinear Analysis of Biaxially Loaded High Strength Rectangular Concrete-Filled Steel Tubular Slender Beam-Columns,Part 1: Theory. , 2012, , .		0
79	Nonlinear Inelastic Behavior of Circular Concrete-Filled Steel Tubular Slender Beam-Columns with Preload Effects. , 2012, , .		Ο
80	Nonlinear analysis of rectangular CFSST slender columns. , 2018, , 95-124.		0
81	Nonlinear analysis of CFSST short columns. , 2018, , 13-59.		0
82	Nonlinear analysis of circular CFSST slender columns. , 2018, , 61-93.		0