Xinping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/733930/publications.pdf

Version: 2024-02-01

152 2,898 30 papers citations h-index

153

docs citations

h-index g-index

153 3298
times ranked citing authors

46

153 all docs

#	Article	IF	CITATIONS
1	Heavyâ€Atomâ€Free Roomâ€Temperature Phosphorescent Rylene Imide for Highâ€Performing Organic Photovoltaics. Advanced Science, 2022, 9, e2103975.	11.2	12
2	Plasmonic Bragg Grating for Optical Feedback Raman Detection. Advanced Engineering Materials, 2022, 24, 2101295.	3.5	1
3	A self-supported ultrathin plasmonic film for ultrafast optical switching. Nanoscale Advances, 2022, 4, 943-951.	4.6	1
4	Ag Nanoparticle-Decorated Graphene Oxide Coatings on the Inner Walls of Optofluidic Capillaries for Real-Time Trace SERS Detection. ACS Applied Nano Materials, 2022, 5, 2445-2450.	5.0	13
5	Substrate Effects on the Random Lasing Performance of Solution-Processed Hybrid-Perovskite Multicrystal Film. Crystals, 2022, 12, 334.	2.2	1
	Structural phase transitions and Raman identifications of the layered van der Waals magnet <mml:math< td=""><td></td><td>_</td></mml:math<>		_
6	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi>CrI</mml:mi><mml:mn>2<td>nn<i>></i>3;7mml:</td><td>:msub></td></mml:mn></mml:msub>	nn <i>></i> 3;7mml:	:msub>
7	An ultrastable perovskite–polymer exciplex through self energy-level adaption for under-water light-emitting devices. Journal of Materials Chemistry C, 2022, 10, 8609-8616.	5.5	4
8	Mechanically Contacted Distributed-Feedback Optical Microcavity. Nanomaterials, 2022, 12, 1883.	4.1	1
9	Low-Temperature Discrimination of Defect States by Exciton Dynamics in Thin-Film MAPbBr ₃ Perovskite. Journal of Physical Chemistry Letters, 2022, 13, 6093-6100.	4.6	1
10	Observing the On-Site Generation of Excitons and Charges by Low-Temperature Spectroscopy. ACS Applied Materials & District Spectroscopy. ACS Applied Materials & Distr	8.0	O
11	A perovskite single crystal with one-dimensional structure enables photodetection with negligible hysteresis. Journal of Materials Chemistry C, 2021, 9, 3470-3476.	5.5	6
12	A SERS-active capillary for direct molecular trace detection in liquids. Nanoscale Advances, 2021, 3, 2617-2622.	4.6	7
13	Threshold Size Effects in the Patterned Crystallization of Hybrid Halide Perovskites for Random Lasing. Advanced Photonics Research, 2021, 2, 2000097.	3.6	6
14	Plasmonic hollow fibers with distributed inner-wall hotspots for direct SERS detection of flowing liquids. Optics Letters, 2021, 46, 1369.	3.3	11
15	Optical Fiber Delivered Ultrafast Plasmonic Optical Switch. Advanced Science, 2021, 8, 2100280.	11.2	11
16	Efficient generation of complex vectorial optical fields with metasurfaces. Light: Science and Applications, 2021, 10, 67.	16.6	75
17	Ultrafast two-photon optical switch using single crystal hybrid halide perovskites. Optica, 2021, 8, 735.	9.3	10
18	Exciton Self-Trapping Dynamics in 1D Perovskite Single Crystals: Effect of Quantum Tunnelling. Journal of Physical Chemistry Letters, 2021, 12, 4509-4516.	4.6	20

#	Article	IF	Citations
19	Optical Feedback for Sensitivity Enhancement in Direct Raman Detection of Liquids. Journal of Spectroscopy, 2021, 2021, 1-7.	1.3	3
20	Directional color routing assisted by switchable Fano resonance in bimetallic metagrating. Nanophotonics, 2021, 10, 2497-2507.	6.0	4
21	Flexible Photodriven Actuator Based on Gradient–Paraffin-Wax-Filled Ti ₃ C ₂ T _{<i>x</i>} MXene Film for Bionic Robots. ACS Nano, 2021, 15, 12826-12835.	14.6	52
22	Mobility of Small Molecules in Solid Polymer Film for π-Stacked Crystallization. Crystals, 2021, 11, 1022.	2.2	1
23	Capillary Sensors Composed of CdTe Quantum Dots for Real-Time In Situ Detection of Cu ²⁺ . ACS Applied Nano Materials, 2021, 4, 8990-8997.	5.0	22
24	Secondary Exciplex by Electromer Mediated Charge Transfer for Multiband Electroluminescence. ACS Macro Letters, 2021, 10, 1236-1242.	4.8	1
25	Two-Dimensional Crystalline Gridding Networks of Hybrid Halide Perovskite for Random Lasing. Crystals, 2021, 11, 1114.	2.2	4
26	Plasmon extinguishment by bandedge shift identified as a second-order spectroscopic differentiation. Nanophotonics, 2021, 10, 1329-1335.	6.0	8
27	Molecular trace detection in liquids using refocusing optical feedback by a silver-coated capillary. Nanoscale Advances, 2021, 3, 6934-6939.	4.6	4
28	Wafer-scale freestanding vanadium dioxide film. Science Advances, 2021, 7, eabk3438.	10.3	24
29	A Paper-Fiber-Supported 3D SERS Substrate. Plasmonics, 2020, 15, 889-896.	3.4	13
30	Transient Electronic Depletion and Lattice Expansion Induced Ultrafast Bandedge Plasmons. Advanced Science, 2020, 7, 1902408.	11.2	13
31	Recent advances for phase-transition materials for actuators. Journal of Applied Physics, 2020, 128, .	2.5	12
32	Gold-Stabilized Gold–Silver Alloy Nanostructures as High-Performance SERS Substrate. Plasmonics, 2020, 15, 2027-2032.	3.4	10
33	A spatially pinned surface plasmon through short-circuiting electronic oscillation in waveguide-sustained SPPs. Nanoscale, 2020, 12, 21703-21712.	5.6	0
34	Controlling angular dispersions in optical metasurfaces. Light: Science and Applications, 2020, 9, 76.	16.6	95
35	Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities. Science China Information Sciences, 2020, 63, 1.	4.3	22
36	A bottom-up strategy toward a flexible vanadium dioxide/silicon nitride composite film with infrared sensing performance. Nanoscale, 2020, 12, 11863-11867.	5.6	5

#	Article	IF	CITATIONS
37	A flexible, multifunctional, active terahertz modulator with an ultra-low triggering threshold. Journal of Materials Chemistry C, 2020, 8, 10213-10220.	5.5	15
38	Femtosecond visualization of oxygen vacancies in metal oxides. Science Advances, 2020, 6, eaax9427.	10.3	44
39	Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting. Metals, 2020, 10, 191.	2.3	56
40	Controlling Molecule Aggregation and Electronic Spatial Coherence in the H-Aggregate and J-Aggregate Regime at Room Temperature. Polymers, 2020, 12, 786.	4.5	6
41	Complementary Dark and Bright Plasmonic Nanocavities with Controllable Energy Exchange for SERS Sensing. Advanced Optical Materials, 2020, 8, 2000544.	7.3	8
42	End-emitting nano organic light emitting diodes (OLEDs) with directional output. Nanophotonics, 2020, 9, 2905-2913.	6.0	4
43	Controlling amplified spontaneous emission of quantum dots by polymerized nanostructure interfaces. Optics Letters, 2020, 45, 4385.	3.3	4
44	Highâ€ <i>Q</i> Polymer Microcavities Integrated on a Multicore Fiber Facet for Vapor Sensing. Advanced Optical Materials, 2019, 7, 1900602.	7.3	44
45	Achieving Infrared Detection by All-Si Plasmonic Hot-Electron Detectors with High Detectivity. ACS Nano, 2019, 13, 8433-8441.	14.6	47
46	Tunable plasmonic random laser based on a wedge shaped resonator. Organic Electronics, 2019, 75, 105337.	2.6	16
47	Direct Laser Annealing of Surfaceâ€Enhanced Raman Scattering Substrates. Advanced Engineering Materials, 2019, 21, 1900779.	3.5	2
48	Ultrafast optical switching based on mutually enhanced resonance modes in gold nanowire gratings. Nanoscale, 2019, 11, 17807-17814.	5.6	8
49	A silicon-based quantum dot random laser. RSC Advances, 2019, 9, 28642-28647.	3.6	10
50	Infrared micro-detectors with high sensitivity and high response speed using VO ₂ -coated helical carbon nanocoils. Journal of Materials Chemistry C, 2019, 7, 12095-12103.	5.5	21
51	Femtosecond tuning dynamics of organic amplifiers based on injection into DFB resonators of slant gratings. Organic Electronics, 2019, 66, 156-162.	2.6	2
52	Controlling the Performance of Polymer Lasers via the Cavity Coupling. Polymers, 2019, 11, 764.	4.5	7
53	Femtosecond Thin-Film Laser Amplifiers Using Chirped Gratings. ACS Omega, 2019, 4, 7980-7986.	3.5	2
54	Flexible Random Laser Using Silver Nanoflowers. Polymers, 2019, 11, 619.	4.5	23

#	Article	IF	CITATIONS
55	Effects of Cavity Structure on Tuning Properties of Polymer Lasers in a Liquid Environment. Polymers, 2019, 11, 329.	4.5	4
56	Operating Characteristics of High-Order Distributed Feedback Polymer Lasers. Polymers, 2019, 11, 258.	4.5	15
57	Ag nanoparticle-enhanced alkyl radical generation in photopolymerization for holographic recording. Nanophotonics, 2019, 8, 1795-1802.	6.0	6
58	Ultrafast Plasmonic Optical Switching Structures and Devices. Frontiers in Physics, 2019, 7, .	2.1	25
59	Femtosecond Optical Annealing Induced Polymer Melting and Formation of Solid Droplets. Polymers, 2019, 11, 128.	4.5	1
60	Surfaceâ€Plasmonâ€Polariton Diode by Asymmetric Planoâ€Concave Nanocavities. Advanced Optical Materials, 2018, 6, 1701226.	7.3	7
61	Conductive connection induced speed-up of localized-surface-plasmon dynamics. Journal of Optics (United Kingdom), 2018, 20, 014011.	2.2	9
62	A dual-wavelength polymer random laser with the step-type cavity. Organic Electronics, 2018, 57, 323-326.	2.6	22
63	Polymer Lasing in a Periodic-Random Compound Cavity. Polymers, 2018, 10, 1194.	4.5	9
64	Optically processed microlens array for single-beam lithography of plasmonic structures. Nanophotonics, 2018, 7, 1819-1825.	6.0	5
65	Organic light-emitting diodes based on electromer-mediated heterojunctions. Applied Physics Letters, 2018, 113, .	3 . 3	6
66	Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs. Nanoscale, 2018, 10, 11158-11164.	5.6	35
67	Two-photon pumped amplified spontaneous emission based on all-inorganic perovskite nanocrystals embedded with gold nanorods. Optical Materials, 2018, 81, 55-58.	3.6	15
68	Red-green-blue plasmonic random lasing from cascaded polymer slices. Laser Physics Letters, 2018, 15, 085803.	1.4	9
69	Bimetallic Network with Heteroâ€interfacial Plasmons. Advanced Materials Interfaces, 2018, 5, 1800580.	3.7	2
70	Continuously tunable distributed feedback polymer laser. Optics Express, 2018, 26, 4491.	3.4	16
71	Flexible transfer of plasmonic photonic structures onto fiber tips for sensor applications in liquids. Nanoscale, 2018, 10, 16193-16200.	5.6	21
72	Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles. Scientific Reports, 2018, 8, 10499.	3.3	52

#	Article	IF	Citations
73	Toward Electrically Pumped Polymer Lasing: Lightâ€Emitting Diodes Based on Microcavity Arrays of Distributed Bragg Gratings. Advanced Optical Materials, 2018, 6, 1800806.	7.3	10
74	Tunable polymer lasers based on metal-dielectric hybrid cavity. Optics Express, 2018, 26, 32048.	3.4	8
75	Synchronous Tuning of Twined Resonance Modes with Controllable Spectral Separation in Plasmonic Gratings. Plasmonics, 2017, 12, 139-144.	3.4	0
76	Ultrafast injection-locked amplification in a thin-film distributed feedback microcavity. Nanoscale, 2017, 9, 2689-2694.	5.6	8
77	Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement. Scientific Reports, 2017, 7, 40071.	3.3	10
78	Laser excitation induced modifications on distributed feedback microcavities using organic semiconductors. Optics Communications, 2017, 392, 95-99.	2.1	3
79	Ultrafast Multipolar Plasmon for Unidirectional Optical Switching in a Hemisphereâ€Nanoshell Array. Advanced Optical Materials, 2017, 5, 1601088.	7.3	23
80	Particle plasmonâ€induced charge trapping at heterointerfaces in PCDTBT:PC ₇₀ BM blends. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 940-947.	2.1	2
81	A RGB random laser on an optical fiber facet. RSC Advances, 2017, 7, 45852-45855.	3.6	25
82	Distributed feedback lasing in a metallic cavity. Applied Physics Letters, 2017, 111, .	3.3	9
83	Singleâ€layer narrowâ€band beam splitter based on a transparent grating with highâ€spectral contrast and highâ€angle sensitivity. Micro and Nano Letters, 2017, 12, 767-771.	1.3	1
84	Red-green-blue plasmonic random laser. Optics Express, 2017, 25, 2100.	3.4	35
85	Broadband Dual-Phase Plasmons through Metallization of Polymeric Heterojunctions. Metals, 2017, 7, 314.	2.3	1
86	Directional Alignment of Polyfluorene Copolymers at Patterned Solid-Liquid Interfaces. Polymers, 2017, 9, 356.	4.5	1
87	Ultrafast Optical Heating Induced Polarization-Dependent Optical Switching in Gold Nanowires. Applied Sciences (Switzerland), 2017, 7, 46.	2.5	6
88	Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning. Materials, 2016, 9, 121.	2.9	5
89	Ultrafast particle-plasmon enhancement by energy-band modification in nanostructured tungsten carbide. Optics Express, 2016, 24, 22730.	3.4	6
90	Multi-wavelength lasing in a beat structure. Applied Physics Letters, 2016, 109, .	3.3	5

#	Article	IF	CITATIONS
91	Free-standing membrane polymer laser on the end of an optical fiber. Applied Physics Letters, 2016, 108, 041904.	3.3	6
92	Dual-wavelength polymer laser based on an active/inactive/active sandwich-like structure. Applied Physics Letters, 2016, 109, .	3.3	7
93	Plasmonic microcavity using photo-reduced silver nanoparticles and light-emitting polymer. Optics Express, 2016, 24, 1747.	3.4	6
94	Iodomethane-Mediated Organometal Halide Perovskite with Record Photoluminescence Lifetime. ACS Applied Materials & Diterfaces, 2016, 8, 23181-23189.	8.0	35
95	Terahertz beat oscillation of plasmonic electrons interacting with femtosecond light pulses. Scientific Reports, 2016, 6, 18902.	3.3	13
96	Ultra-thin plasmonic random lasers. Optics Express, 2016, 24, 437.	3.4	32
97	Plasmonic random lasing in polymer fiber. Optics Express, 2016, 24, 12748.	3.4	31
98	A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching. Nanoscale, 2016, 8, 1421-1429.	5.6	32
99	Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications. Biosensors and Bioelectronics, 2015, 68, 719-725.	10.1	39
100	Stimulated emission within the exciplex band by plasmonic-nanostructured polymeric heterojunctions. Nanoscale, 2015, 7, 5624-5632.	5.6	7
101	The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems. Journal of Materials Chemistry C, 2015, 3, 3722-3729.	5.5	22
102	Investigation of bimetallic nanoparticles with broad plasmon response. Optical Engineering, 2015, 54, 067110.	1.0	2
103	Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate. Nanoscale, 2015, 7, 12312-12317.	5.6	34
104	Photo-reduction of metallic ions doped in patterned polymer films for the fabrication of plasmonic photonic crystals. Journal of Materials Chemistry C, 2015, 3, 6046-6052.	5.5	7
105	Plasmonic random laser on the fiber facet. Optics Express, 2015, 23, 23985.	3.4	29
106	Red–green–blue laser emission from cascaded polymer membranes. Nanoscale, 2015, 7, 19935-19939.	5.6	28
107	A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale, 2015, 7, 2235-2240.	5.6	96
108	A Plasmonic Photonic Diode for Unidirectional Focusing, Imaging, and Wavelength Division Deâ∈Multiplexing. Advanced Optical Materials, 2014, 2, 355-363.	7.3	3

#	Article	IF	Citations
109	Erasable thin-film optical diode based on a photoresponsive liquid crystal polymer. Nanoscale, 2014, 6, 3854.	5.6	10
110	Optical Diodes: A Plasmonic Photonic Diode for Unidirectional Focusing, Imaging, and Wavelength Division De-Multiplexing (Advanced Optical Materials 4/2014). Advanced Optical Materials, 2014, 2, 354-354.	7.3	0
111	Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures. Nanoscale, 2014, 6, 5099-5105.	5.6	39
112	Soft plasmons with stretchable spectroscopic response based on thermally patterned gold nanoparticles. Scientific Reports, 2014, 4, 4182.	3.3	25
113	Chargeâ€transfer complex coupled between polymer and Hâ€aggregate molecular crystals. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 749-755.	2.1	3
114	Sensitivity optimization for the index sensors based on waveguide metallic photonic crystals through angle-resolved tuning. Nanoscience Methods, 2013, 2, 16-22.	1.0	1
115	Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors. Photonics and Nanostructures - Fundamentals and Applications, 2013, 11, 109-114.	2.0	12
116	Charge percolation pathways in polymer blend photovoltaic diodes with sub-mesoscopic two-phase microstructures. Chemical Physics Letters, 2013, 572, 44-47.	2.6	3
117	Epsilon-near-zero metamaterials for tailoring ultrashort pulses. Applied Physics B: Lasers and Optics, 2013, 113, 185-189.	2.2	11
118	Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms. Optics Express, 2013, 21, 15314.	3.4	27
119	Resonant orders of the coupled mode in waveguide metallic photonic crystals. Optical Engineering, 2013, 52, 034601.	1.0	2
120	Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals. Sensors, 2012, 12, 12082-12097.	3.8	38
121	Gain- and feedback-channel matching in lasers based on radiative-waveguide gratings. Applied Physics Letters, 2012, 101, 143507.	3.3	9
122	A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber. Small, 2012, 8, 1937-1944.	10.0	67
123	Direct Nanopatterning Into Conjugated Polymers Using Interference Crosslinking. Macromolecular Chemistry and Physics, 2012, 213, 1285-1290.	2.2	8
124	Stability of Hydrogen-Terminated Surfaces of Silicon Nanowires in Aqueous Solutions. Journal of Physical Chemistry C, 2011, 115, 3866-3871.	3.1	21
125	Random Laser Based on Waveguided Plasmonic Gain Channels. Nano Letters, 2011, 11, 4295-4298.	9.1	166
126	Polymer laser based on active waveguide grating structures. Optics Express, 2011, 19, 6487.	3.4	39

#	Article	IF	Citations
127	Annealing Process in the Refurbishment of the Plasmonic Photonic Structures Fabricated Using Colloidal Gold Nanoparticles. Plasmonics, 2011, 6, 273-279.	3.4	8
128	Lowâ€Power and Highâ€Contrast Nanoscale Allâ€Optical Diodes Via Nanocomposite Photonic Crystal Microcavities. Advanced Functional Materials, 2011, 21, 1803-1809.	14.9	48
129	A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions. Advanced Functional Materials, 2011, 21, 4219-4227.	14.9	59
130	Direct Writing of Polymer Lasers Using Interference Ablation. Advanced Materials, 2011, 23, 1860-1864.	21.0	72
131	Waveguide Fabry-Pérot microcavity arrays. Applied Physics Letters, 2011, 99, .	3.3	19
132	Hybrid metallic photonic crystals with higher-order coupling processes. Journal of Applied Physics, 2011, 110, 074313.	2.5	2
133	Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 131-139.	2.0	16
134	Molecular concentration sensor based on the diffraction resonance mode of gold nanowire gratings. Nanotechnology, 2010, 21, 335501.	2.6	11
135	Fiber coupled waveguide grating structures. Applied Physics Letters, 2010, 96, .	3.3	31
136	Charge Recombination and Exciton Annihilation Reactions in Conjugated Polymer Blends. Journal of the American Chemical Society, 2010, 132, 328-335.	13.7	65
137	Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures. Nanotechnology, 2009, 20, 425303.	2.6	26
138	Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers. Journal of Applied Physics, 2009, 105, .	2.5	27
139	Theoretical analyses and experimental studies on semiconductor disk lasers. Optical and Quantum Electronics, 2009, 41, 39-45.	3.3	2
140	Q-Switching Yb:YAG Laser and Intracavity SHG. , 2009, , .		0
141	Semiconductor disk laser with a diamond heatspreader. , 2009, , .		0
142	Tunable Ultrafast Optical Switching via Waveguided Gold Nanowires. Advanced Materials, 2008, 20, 4455-4459.	21.0	99
143	Spatial effects in two-photon excitation transient absorption spectroscopy. Journal of Modern Optics, 2008, 55, 3641-3651.	1.3	0
144	Band-Selective Optical Polarizer Based on Gold-Nanowire Plasmonic Diffraction Gratings. Nano Letters, 2008, 8, 2653-2658.	9.1	54

#	Article	IF	CITATIONS
145	Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles. Nanotechnology, 2008, 19, 285202.	2.6	20
146	Multiphoton excited photoconductivity in polyfluorene. Physical Review B, 2007, 75, .	3.2	14
147	Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles. Applied Physics Letters, 2007, 90, 133114.	3.3	35
148	Organic Crystal Fibers Aligned into Oriented Bundles with Polarized Emission. Journal of Physical Chemistry B, 2007, 111, 10881-10885.	2.6	26
149	Metallic Photonic Crystals Based on Solution-Processible Gold Nanoparticles. Nano Letters, 2006, 6, 651-655.	9.1	126
150	Sequential absorption processes in two-photon-excitation transient absorption spectroscopy in a semiconductor polymer. Physical Review B, 2006, 73, .	3.2	17
151	Femtosecond optical switch using molecular two-photon absorption with multi-step charge dissociation. Journal of Materials Chemistry C, 0, , .	5.5	O
152	Infrared Localized Surface Plasmon with Curved Electron Trajectory. Advanced Optical Materials, 0, , 2200647.	7.3	0