Anna M Eiring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/733894/publications.pdf

Version: 2024-02-01

70 3,270 papers citations

304743 149698 22 56
h-index g-index

72 72 all docs citations

72 times ranked 5035 citing authors

#	Article	IF	CITATIONS
1	MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common \hat{l}^2 -chain cytokine receptor endocytosis. Blood, 2022, 139, 761-778.	1.4	7
2	Harnessing the Immune System with Cancer Vaccines: From Prevention to Therapeutics. Vaccines, 2022, 10, 816.	4.4	7
3	Ethnic and border differences on blood cancer presentation and outcomes: A Texas populationâ€based study. Cancer, 2021, 127, 1068-1079.	4.1	11
4	Blood cancer health disparities in the United States Hispanic population. Journal of Physical Education and Sports Management, 2021, 7, a005967.	1.2	2
5	Proteasome 26S subunit, non-ATPases 1 (PSMD1) and 3 (PSMD3), play an oncogenic role in chronic myeloid leukemia by stabilizing nuclear factor-kappa B. Oncogene, 2021, 40, 2697-2710.	5.9	20
6	26S Proteasome Non-ATPase Regulatory Subunits 1 (PSMD1) and 3 (PSMD3) as Putative Targets for Cancer Prognosis and Therapy. Cells, 2021, 10, 2390.	4.1	13
7	Femoral Heads from Total Hip Arthroplasty as a Source of Adult Hematopoietic Cells. Acta Haematologica, 2021, 144, 458-464.	1.4	1
8	A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells, 2021, 10, 2833.	4.1	14
9	Genomic Abnormalities as Biomarkers and Therapeutic Targets in Acute Myeloid Leukemia. Cancers, 2021, 13, 5055.	3.7	4
10	A Role for Lipid Metabolism in Tyrosine Kinase Inhibitor (TKI) Resistance of Chronic Myeloid Leukemia (CML). Blood, 2021, 138, 2542-2542.	1.4	0
11	Dasatinib overcomes stroma-based resistance to the FLT3 inhibitor quizartinib using multiple mechanisms. Leukemia, 2020, 34, 2981-2991.	7.2	8
12	Coordinated inhibition of nuclear export and Bcr-Abl1 selectively targets chronic myeloid leukemia stem cells. Leukemia, 2020, 34, 1679-1683.	7.2	6
13	Energy metabolism and drug response in myeloid leukaemic stem cells. British Journal of Haematology, 2019, 186, 524-537.	2.5	12
14	Nuclear–Cytoplasmic Transport Is a Therapeutic Target in Myelofibrosis. Clinical Cancer Research, 2019, 25, 2323-2335.	7.0	24
15	NF-κB-Dependent Activation of the Proteasome Components, PSMD1 and PSMD3, As a Mechanism of Resistance to Imatinib. Blood, 2019, 134, 2923-2923.	1.4	1
16	Retrospective Study of Incidence and Survival for Patients with Hematologic Malignancies Residing at the U.S./Mexico Border. Blood, 2019, 134, 4782-4782.	1.4	0
17	Combining Dasatinib and AC220 Reduces Stroma-Based pSTAT5Y694 in FLT3-ITD+ AML and Overcomes FLT3 TKI Resistance. Blood, 2018, 132, 2641-2641.	1.4	О
18	miR-155 promotes FLT3-ITD–induced myeloproliferative disease through inhibition of the interferon response. Blood, 2017, 129, 3074-3086.	1.4	57

#	Article	IF	CITATIONS
19	Disarming an Electrophilic Warhead: Retaining Potency in Tyrosine Kinase Inhibitor (TKI)â€Resistant CML Lines While Circumventing Pharmacokinetic Liabilities. ChemMedChem, 2016, 11, 850-861.	3.2	23
20	A role for FOXO1 in BCR–ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Leukemia, 2016, 30, 1493-1501.	7.2	57
21	Rapid conversion of chronic myeloid leukemia to chronic myelomonocytic leukemia in a patient on imatinib therapy. Leukemia, 2016, 30, 2275-2279.	7.2	4
22	Age-related mutations and chronic myelomonocytic leukemia. Leukemia, 2016, 30, 906-913.	7.2	119
23	Selective Inhibition of Nuclear Cytoplasmic Transport As a New Treatment Paradigm in Myelofibrosis. Blood, 2016, 128, 636-636.	1.4	4
24	Stroma-Based Activation of pSTAT3Y705 Confers Resistance to FLT3 Inhibitors in FLT3 ITD-Positive AML. Blood, 2016, 128, 34-34.	1.4	2
25	MS4A3: A New Player in Leukemic Stem Cell Survival in Chronic Myeloid Leukemia. Blood, 2016, 128, 934-934.	1.4	7
26	shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance. Blood, 2015, 125, 1772-1781.	1.4	41
27	A coiled-coil mimetic intercepts BCR-ABL1 dimerization in native and kinase-mutant chronic myeloid leukemia. Leukemia, 2015, 29, 1668-1675.	7.2	10
28	Limited efficacy of BMS-911543 in a murine model of Janus kinase 2 V617F myeloproliferative neoplasm. Experimental Hematology, 2015, 43, 537-545.e11.	0.4	10
29	\hat{l}^2 -Catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Leukemia, 2015, 29, 2328-2337.	7.2	37
30	Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia. Leukemia, 2015, 29, 586-597.	7.2	111
31	MS4A3 Improves Imatinib Response and Survival in BCR-ABL1 Primary TKI Resistance and in Blastic Transformation of Chronic Myeloid Leukemia. Blood, 2015, 126, 14-14.	1.4	2
32	Transition of Chronic Myeloid Leukemia to Chronic Myelomonocytic Leukemia As a Tool to Observe Development of Chronic Myelomonocytic Leukemia. Blood, 2015, 126, 5223-5223.	1.4	0
33	Individualizing kinase-targeted cancer therapy: the paradigm of chronic myeloid leukemia. Genome Biology, 2014, 15, 461.	8.8	23
34	BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia. Cancer Cell, 2014, 26, 428-442.	16.8	292
35	Next Generation Sequencing to Delineate the Mutational Landscape of Chronic Myelomonocytic Leukemia (CMML): Novel Disease Genes and Correlations with Survival. Blood, 2014, 124, 4637-4637.	1.4	0
36	Limited Efficacy of BMS-911543 in a Murine Model of JAK2V617F Myeloproliferative Neoplasm. Blood, 2014, 124, 5572-5572.	1.4	0

#	Article	IF	CITATIONS
37	The Tumor Suppressors, MS4A3 and GOS2, Are Downregulated in CML Cells with BCR-ABL1 Kinase-Independent Resistance. Blood, 2014, 124, 1786-1786.	1.4	0
38	Design, Optimization, and Pre-Clinical Evaluation of Direct, Mechanism-Based STAT3 Inhibitors for Treating Myeloid Disorders. Blood, 2014, 124, 4816-4816.	1.4	0
39	Autocrine TNF-α Signaling in Hematopoietic Stem Cells Promotes Myeloproliferative Disease Progression through Activation of TNFR2. Blood, 2014, 124, 1888-1888.	1.4	0
40	BCR-ABL1 compound mutations in tyrosine kinase inhibitor–resistant CML: frequency and clonal relationships. Blood, 2013, 121, 489-498.	1.4	187
41	Lenalidomide-mediated enhanced translation of C/EBPÎ \pm -p30 protein up-regulates expression of the antileukemic microRNA-181a in acute myeloid leukemia. Blood, 2013, 121, 159-169.	1.4	56
42	KIT Signaling Governs Differential Sensitivity of Mature and Primitive CML Progenitors to Tyrosine Kinase Inhibitors. Cancer Research, 2013, 73, 5775-5786.	0.9	22
43	What challenges remain in chronic myeloid leukemia research?. Haematologica, 2013, 98, 1168-1172.	3.5	13
44	PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. Journal of Clinical Investigation, 2013, 123, 4144-4157.	8.2	192
45	An Unbiased shRNA Library Screen Identifies Nucleocytoplasmic Transport As a Potential Target For Treatment Of Chronic Myeloid Leukemia. Blood, 2013, 122, 2707-2707.	1.4	1
46	BP5-087, a Novel STAT3 Inhibitor, Combines With BCR-ABL1 Inhibition To Overcome Kinase-Independent Resistance In Chronic Myeloid Leukemia. Blood, 2013, 122, 854-854.	1.4	0
47	Direct Contact With Bone Marrow Stromal Cells Protects CML Progenitors From Imatinib Through Cytoplasmic Stabilization Of \hat{l}^2 -Catenin. Blood, 2013, 122, 3982-3982.	1.4	17
48	Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia, 2012, 26, 1140-1143.	7.2	97
49	Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nature Reviews Cancer, 2012, 12, 513-526.	28.4	260
50	Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood, 2012, 119, 5621-5631.	1.4	138
51	Suppression of CML Progenitor but Not Stem Cells Requires Simultaneous Inhibition of KIT and BCR-ABL1 Blood, 2012, 120, 2778-2778.	1.4	0
52	Next-Generation STAT3 Inhibitors As Targeted Therapeutics in Chronic Myeloid Leukemia Blood, 2012, 120, 2445-2445.	1.4	0
53	STAT3 Inhibition Synergizes with BCR-ABL1 Inhibition to Overcome Kinase-Independent TKI Resistance in Chronic Myeloid Leukemia (CML). Blood, 2012, 120, 31-31.	1.4	2
54	Advances in the treatment of chronic myeloid leukemia. BMC Medicine, 2011, 9, 99.	5.5	36

#	Article	IF	CITATIONS
55	Partially or Fully BCR-ABL Independent Mechanisms of in Vitro Resistance to Ponatinib. Blood, 2011, 118, 2481-2481.	1.4	1
56	Frequency and Clonality of BCR-ABL Compound Mutations in Chronic Myeloid Leukemia,. Blood, 2011, 118, 3744-3744.	1.4	0
57	Intrinsic and Extrinsic Survival Signals Converge on STAT3 As a Critical Mediator of BCR-ABL-Independent Tyrosine Kinase Inhibitor Resistance,. Blood, 2011, 118, 3742-3742.	1.4	0
58	Sp1/NFκB/HDAC/miR-29b Regulatory Network in KIT-Driven Myeloid Leukemia. Cancer Cell, 2010, 17, 333-347.	16.8	235
59	The new role of microRNAs in cancer. Future Oncology, 2010, 6, 1203-1206.	2.4	7
60	miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts. Cell, 2010, 140, 652-665.	28.9	514
61	Suppression of RISC-Independent Decoy and RISC-Mediated mRNA Base-Pairing Activities of MicroRNA-328 Is Required for Differentiation-Arrest and Enhanced Survival of Blast Crisis CML Progenitors Blood, 2009, 114, 855-855.	1.4	0
62	Alloreactive (CD4-Independent) CD8+ T Cells Jeopardize Long-Term Survival of Intrahepatic Islet Allografts. American Journal of Transplantation, 2008, 8, 1113-1128.	4.7	14
63	Identification of novel posttranscriptional targets of the BCR/ABL oncoprotein by ribonomics: requirement of E2F3 for BCR/ABL leukemogenesis. Blood, 2008, 111, 816-828.	1.4	44
64	High levels of the BCR/ABL oncoprotein are required for the MAPK-hnRNP-E2–dependent suppression of C/EBPα-driven myeloid differentiation. Blood, 2007, 110, 994-1003.	1.4	91
65	FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome–positive acute lymphocytic leukemia. Journal of Clinical Investigation, 2007, 117, 2408-2421.	8.2	308
66	Activation and Maturation of Alloreactive CD4-Independent, CD8+Cytolytic T Cells. American Journal of Transplantation, 2006, 6, 2268-2281.	4.7	20
67	CD4+ T-Cell???Dependent Immune Damage of Liver Parenchymal Cells Is Mediated by Alloantibody. Transplantation, 2005, 80, 514-521.	1.0	18
68	Targeting LFA-1 and CD154 Suppresses the In Vivo Activation and Development of Cytolytic (CD4-Independent) CD8+T Cells. Journal of Immunology, 2005, 175, 7855-7866.	0.8	31
69	Critical Role for CD8+ T Cells in Allograft Acceptance Induced by DST and CD40/CD154 Costimulatory Blockade. American Journal of Transplantation, 2004, 4, 1061-1070.	4.7	14
70	Evidence for Tissue-Directed Immune Responses: Analysis of CD4- and CD8-Dependent Alloimmunity. Transplantation, 2004, 78, 1125-1133.	1.0	20