Supaart Sirikantaramas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7338674/publications.pdf

Version: 2024-02-01

39 papers

1,782 citations

430874 18 h-index 302126 39 g-index

45 all docs

45 docs citations 45 times ranked

2074 citing authors

#	Article	IF	CITATIONS
1	The Gene Controlling Marijuana Psychoactivity. Journal of Biological Chemistry, 2004, 279, 39767-39774.	3.4	254
2	Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-typeCannabis sativa. FEBS Letters, 2007, 581, 2929-2934.	2.8	216
3	Tetrahydrocannabinolic Acid Synthase, the Enzyme Controlling Marijuana Psychoactivity, is Secreted into the Storage Cavity of the Glandular Trichomes. Plant and Cell Physiology, 2005, 46, 1578-1582.	3.1	192
4	The Metabolic Response of Arabidopsis Roots to Oxidative Stress is Distinct from that of Heterotrophic Cells in Culture and Highlights a Complex Relationship between the Levels of Transcripts, Metabolites, and Flux. Molecular Plant, 2009, 2, 390-406.	8.3	155
5	Mechanisms of resistance to self-produced toxic secondary metabolites in plants. Phytochemistry Reviews, 2008, 7, 467-477.	6.5	111
6	Mutations in topoisomerase I as a self-resistance mechanism coevolved with the production of the anticancer alkaloid camptothecin in plants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6782-6786.	7.1	94
7	Camptothecin: Therapeutic Potential and Biotechnology. Current Pharmaceutical Biotechnology, 2007, 8, 196-202.	1.6	83
8	Recent Advances in Cannabis sativa Research: Biosynthetic Studies and Its Potential in Biotechnology. Current Pharmaceutical Biotechnology, 2007, 8, 237-243.	1.6	80
9	Phytocannabinoids in <i>Cannabis sativa</i> : Recent Studies on Biosynthetic Enzymes. Chemistry and Biodiversity, 2007, 4, 1649-1663.	2.1	75
10	Production of î"1-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris. Biochemical and Biophysical Research Communications, 2007, 361, 675-680.	2.1	51
11	Transport of camptothecin in hairy roots of Ophiorrhiza pumila. Phytochemistry, 2007, 68, 2881-2886.	2.9	41
12	Metabolic variation in the pulps of two durian cultivars: Unraveling the metabolites that contribute to the flavor. Food Chemistry, 2018, 268, 118-125.	8.2	40
13	Isocitrate lyase plays important roles in plant salt tolerance. BMC Plant Biology, 2019, 19, 472.	3.6	33
14	Two novel antimicrobial defensins from rice identified by gene coexpression network analyses. Peptides, 2016, 84, 7-16.	2.4	30
15	A survival strategy: The coevolution of the camptothecin biosynthetic pathway and self-resistance mechanism. Phytochemistry, 2009, 70, 1894-1898.	2.9	29
16	Identification and Functional Characterization of Genes Involved in the Biosynthesis of Caffeoylquinic Acids in Sunflower (Helianthus annuus L.). Frontiers in Plant Science, 2019, 10, 968.	3.6	26
17	Genome-wide analysis of the Dof gene family in durian reveals fruit ripening-associated and cultivar-dependent Dof transcription factors. Scientific Reports, 2019, 9, 12109.	3.3	24
18	Auxin Response Factor 2A Is Part of the Regulatory Network Mediating Fruit Ripening Through Auxin-Ethylene Crosstalk in Durian. Frontiers in Plant Science, 2020, 11, 543747.	3.6	22

#	Article	IF	CITATIONS
19	Gene expression analysis, subcellular localization, and in planta antimicrobial activity of rice (Oryza) Tj ETQq $1\ 1\ 0.7$	784314 rgl	BT /Overl <mark>oc</mark> l
20	Biosynthetic system of camptothecin: An anticancer plant product. Pure and Applied Chemistry, 2010, 82, 213-218.	1.9	17
21	Assessing Dynamic Changes of Taste-Related Primary Metabolism During Ripening of Durian Pulp Using Metabolomic and Transcriptomic Analyses. Frontiers in Plant Science, 2021, 12, 687799.	3.6	16
22	Camptothecin. Advances in Botanical Research, 2013, 68, 139-161.	1.1	15
23	Structural insight of DNA topoisomerases I from camptothecin-producing plants revealed by molecular dynamics simulations. Phytochemistry, 2015, 113, 50-56.	2.9	15
24	Cannabinoids: Biosynthesis and Biotechnological Applications. , 2017, , 183-206.		15
25	Transcriptome analysis of Pueraria candollei var. mirifica for gene discovery in the biosyntheses of isoflavones and miroestrol. BMC Plant Biology, 2019, 19, 581.	3.6	15
26	Effect of cold-pressed and normal centrifugal juicing on quality attributes of fresh juices: do cold-pressed juices harbor a superior nutritional quality and antioxidant capacity?. Heliyon, 2019, 5, e01917.	3.2	14
27	Heterologous expression and antimicrobial activity of OsGASR3 from rice (Oryza sativa L.). Journal of Plant Physiology, 2018, 224-225, 95-102.	3.5	12
28	Enhanced Production of Bryonolic Acid in Trichosanthes cucumerina L. (Thai Cultivar) Cell Cultures by Elicitors and Their Biological Activities. Plants, 2020, 9, 709.	3.5	12
29	Metabolic Changes and Increased Levels of Bioactive Compounds in White Radish (Raphanus sativus L.) Tj ETQq1	1 _{3.0} 78431	4 ₁ gBT /Cve
30	Potential of Synechocystis PCC 6803 as a novel cyanobacterial chassis for heterologous expression of enzymes in the trans-resveratrol biosynthetic pathway. Protein Expression and Purification, 2016, 121, 163-168.	1.3	9
31	Fruit ripening-associated leucylaminopeptidase with cysteinylglycine dipeptidase activity from durian suggests its involvement in glutathione recycling. BMC Plant Biology, 2021, 21, 69.	3.6	9
32	De novo transcriptome analysis and identification of candidate genes associated with triterpenoid biosynthesis in Trichosanthes cucumerina L Plant Cell Reports, 2021, 40, 1845-1858.	5.6	9
33	Genome-wide identification and expression profiling of durian CYPome related to fruit ripening. PLoS ONE, 2021, 16, e0260665.	2.5	8
34	Transcriptome-wide identification and expression profiling of the ERF gene family suggest roles as transcriptional activators and repressors of fruit ripening in durian. PLoS ONE, 2021, 16, e0252367.	2.5	7
35	Recent advances in cannabinoid biochemistry and biotechnology. ScienceAsia, 2019, 45, 399.	0.5	7
36	Activation of a Refolded, Berberine-specific, Single-chain Fv Fragment by Addition of Free Berberine. Biotechnology Letters, 2006, 28, 999-1006.	2.2	5

#	Article	IF	CITATIONS
37	Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50. Journal of Plant Physiology, 2016, 204, 66-73.	3.5	2
38	Synechocystis PCC 6803 cells heterologously expressing bacterial tyrosine ammonia lyase can use exogenous tyrosine for p-coumaric acid production. Journal of Plant Biochemistry and Biotechnology, 2018, 27, 118-122.	1.7	2
39	In Silico Analyses of Rice Thionin Genes and the Antimicrobial Activity of OsTHION15 Against Phytopathogens. Phytopathology, 2019, 109, 27-35.	2.2	2