Guozhang Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7338543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resistance of Rye Seedlings to Drought and Freeze-Thaw Stress. Polish Journal of Environmental Studies, 2022, , .	1.2	О
2	Physiological Characteristics of <i>Medicago sativa</i> Seedlings in Response to Lab Simulated Basic Salt and Freeze-Thaw Stress. Polish Journal of Environmental Studies, 2022, 31, 1551-1558.	1.2	0
3	Response characteristics of highland barley under freeze-thaw, drought and artemisinin stresses. BMC Plant Biology, 2022, 22, 126.	3.6	10
4	Physiological response of barley seedlings to salinity and artemisinin combined stresses under freeze-thaw environment. Environmental Science and Pollution Research, 2022, 29, 70552-70563.	5.3	2
5	Physiological effects of cutting on <i>Secale cereale</i> L. seedlings under freeze–thaw and alkaline salt stress. Grassland Science, 2021, 67, 299-305.	1.1	2
6	Physiological Responses of Highland Barley Seedlings to NaCl, Drought, and Freeze-Thaw Stress. Journal of Plant Growth Regulation, 2021, 40, 154-161.	5.1	10
7	Physiological effects of different stubble height and freeze-thaw stress on Secale cereale L. seedlings. BMC Plant Biology, 2021, 21, 451.	3.6	2
8	Physiological effects of different concentrations of chloride deicing salt and freeze–thaw stress on Secale cereale L. seedlings. Journal of Plant Growth Regulation, 2020, 39, 15-25.	5.1	3
9	Comparative study on physiological response characteristics of white clover to chloride salt and calciumâ€magnesium acetate (CMA) deicing agents under freeze–thaw stress. Grassland Science, 2020, 66, 95-101.	1.1	4
10	Physiological response of Secale cereale L. seedlings under freezing-thawing and alkaline salt stress. Environmental Science and Pollution Research, 2020, 27, 1499-1507.	5.3	11
11	Physiological response in the leaf and stolon of white clover under acid precipitation and freeze–thaw stress. Functional Plant Biology, 2020, 47, 50.	2.1	11
12	Physiological effects of the combined stresses of freezing-thawing, acid precipitation and deicing salt on alfalfa seedlings. BMC Plant Biology, 2020, 20, 204.	3.6	32
13	Physiological Response Characteristics in Medicago sativa Under Freeze-Thaw and Deicing Salt Stress. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	20
14	Physiological Characteristics of Medicago sativa L. in Response to Acid Deposition and Freeze-Thaw Stress. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	7
15	Physiological and morphological responses of <i>Leymus chinensis</i> to salineâ€alkali stress. Grassland Science, 2015, 61, 217-226.	1.1	23
16	Tolerance mechanisms ofLeymus chinensisto salt–alkaline stress. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 723-734.	0.6	4