
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7338169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustainable Chemistry and Engineering, 2014, 2, 1063-1071.	3.2	1,598
2	Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids, 2016, 215, 534-540.	2.3	277
3	Natural deep eutectic solvents from choline chloride and betaine – Physicochemical properties. Journal of Molecular Liquids, 2017, 241, 654-661.	2.3	194
4	Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 57-66.	2.0	164
5	A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 296-304.	2.0	162
6	Design of controlled release systems for THEDES—Therapeutic deep eutectic solvents, using supercritical fluid technology. International Journal of Pharmaceutics, 2015, 492, 73-79.	2.6	139
7	Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresource Technology, 2014, 157, 360-363.	4.8	110
8	Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Applied Bio Materials, 2019, 2, 4346-4355.	2.3	96
9	Design of Functional Therapeutic Deep Eutectic Solvents Based on Choline Chloride and Ascorbic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 10355-10363.	3.2	93
10	Natural deep eutectic systems as alternative nontoxic cryoprotective agents. Cryobiology, 2018, 83, 15-26.	0.3	89
11	Polymer Science and Engineering Using Deep Eutectic Solvents. Polymers, 2019, 11, 912.	2.0	86
12	How Do Animals Survive Extreme Temperature Amplitudes? The Role of Natural Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 9542-9553.	3.2	79
13	Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnology, 2016, 33, 206-215.	2.4	75
14	The green generation of sunscreens: Using coffee industrial sub-products. Industrial Crops and Products, 2016, 80, 93-100.	2.5	74
15	Economic analysis of a plant for biodiesel production from waste cooking oil via enzymatic transesterification using supercritical carbon dioxide. Journal of Supercritical Fluids, 2014, 85, 31-40.	1.6	72
16	From coffee industry waste materials to skinâ€friendly products with improved skin fat levels. European Journal of Lipid Science and Technology, 2013, 115, 330-336.	1.0	66
17	Terpene-Based Natural Deep Eutectic Systems as Efficient Solvents To Recover Astaxanthin from Brown Crab Shell Residues. ACS Sustainable Chemistry and Engineering, 2020, 8, 2246-2259.	3.2	66
18	Unveil the Anticancer Potential of Limomene Based Therapeutic Deep Eutectic Solvents. Scientific Reports, 2019, 9, 14926.	1.6	60

#	Article	IF	CITATIONS
19	Liquid–liquid equilibria for separation of tocopherol from olive oil using ethyl lactate. Chemical Engineering Journal, 2011, 172, 879-884.	6.6	58
20	Supported liquid membranes based on deep eutectic solvents for gas separation processes. Separation and Purification Technology, 2021, 254, 117593.	3.9	56
21	Phase equilibrium-driven selective hydrogenation of limonene in high-pressure carbon dioxide. Green Chemistry, 2007, 9, 427-430.	4.6	49
22	Valorization of white wine grape pomace through application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. Journal of Supercritical Fluids, 2017, 128, 138-144.	1.6	46
23	Continuous enzymatic production of biodiesel from virgin and waste sunflower oil in supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 56, 259-264.	1.6	44
24	Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech, 2017, 18, 2579-2585.	1.5	42
25	Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. Journal of Supercritical Fluids, 2020, 164, 104943.	1.6	41
26	Effect of water on the structure and dynamics of choline chloride/glycerol eutectic systems. Journal of Molecular Liquids, 2021, 342, 117463.	2.3	41
27	How do we drive deep eutectic systems towards an industrial reality?. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 81-85.	3.2	39
28	Deep Eutectic Solvents for Enzymatic Esterification of Racemic Menthol. ACS Sustainable Chemistry and Engineering, 2019, 7, 19943-19950.	3.2	39
29	Modeling of the PGSS process by crystallization and atomization. AICHE Journal, 2005, 51, 2343-2357.	1.8	38
30	Supercritical carbon dioxide-based integrated continuous extraction of oil from chicken feather meal, and its conversion to biodiesel in a packed-bed enzymatic reactor, at pilot scale. Fuel, 2015, 153, 135-142.	3.4	38
31	Synthesis and Physical and Thermodynamic Properties of Lactic Acid and Malic Acid-Based Natural Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2018, 63, 2548-2556.	1.0	37
32	Semi-continuous extraction/hydrolysis of spent coffee grounds with subcritical water. Journal of Industrial and Engineering Chemistry, 2019, 72, 453-456.	2.9	36
33	Production of Poly(vinyl alcohol) (PVA) Fibers with Encapsulated Natural Deep Eutectic Solvent (NADES) Using Electrospinning. ACS Sustainable Chemistry and Engineering, 2015, 3, 2504-2509.	3.2	35
34	Converting Spent Coffee Grounds into Bioactive Extracts with Potential Skin Antiaging and Lightening Effects. ACS Sustainable Chemistry and Engineering, 2018, 6, 6289-6295.	3.2	35
35	Development of Ion-Jelly® membranes. Separation and Purification Technology, 2013, 106, 22-31.	3.9	33
36	Green solvents for enhanced impregnation processes in biomedicine. Current Opinion in Green and Sustainable Chemistry, 2017, 5, 82-87.	3.2	33

3

#	Article	IF	CITATIONS
37	Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates. International Journal of Biological Macromolecules, 2014, 71, 68-73.	3.6	32
38	Design and processing of drug delivery formulations of therapeutic deep eutectic systems for tuberculosis. Journal of Supercritical Fluids, 2020, 161, 104826.	1.6	31
39	Fractionation of red wine grape pomace by subcritical water extraction/hydrolysis. Journal of Supercritical Fluids, 2020, 160, 104793.	1.6	31
40	The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules, 2021, 26, 2336.	1.7	30
41	Vapor–liquid equilibria and volume expansion of the tetrahydrofuran/CO2 system: Application to a SAS-atomization process. Journal of Supercritical Fluids, 2007, 41, 343-351.	1.6	29
42	Enhanced performance of supercritical fluid foaming of naturalâ€based polymers by deep eutectic solvents. AICHE Journal, 2014, 60, 3701-3706.	1.8	29
43	Binary solid–liquid–gas equilibrium of the tripalmitin/CO2 and ubiquinone/CO2 systems. Fluid Phase Equilibria, 2006, 241, 196-204.	1.4	28
44	Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hosts. Molecular Pharmaceutics, 2017, 14, 3164-3177.	2.3	28
45	Deep eutectic systems from betaine and polyols – Physicochemical and toxicological properties. Journal of Molecular Liquids, 2021, 335, 116201.	2.3	28
46	Natural deep eutectic systems, an emerging class of cryoprotectant agents. Cryobiology, 2021, 101, 95-104.	0.3	28
47	Pseudomonas chlororaphis as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines. New Biotechnology, 2020, 55, 84-90.	2.4	25
48	Phase equilibria of the ternary system methyl oleate/squalene/carbon dioxide at high pressure conditions. Journal of Supercritical Fluids, 2004, 29, 77-85.	1.6	23
49	Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety. Processes, 2021, 9, 893.	1.3	21
50	Unravelling the nature of citric acid: <scp>l</scp> -arginine:water mixtures: the bifunctional role of water. Physical Chemistry Chemical Physics, 2021, 23, 1706-1717.	1.3	20
51	Subcritical Water Extraction and Hydrolysis of Cod (Gadus morhua) Frames to Produce Bioactive Protein Extracts. Foods, 2021, 10, 1222.	1.9	20
52	Dynamic model of a countercurrent packed column operating at high pressure conditions. Journal of Supercritical Fluids, 2004, 32, 183-192.	1.6	19
53	Low-Phytotoxic Deep Eutectic Systems as Alternative Extraction Media for the Recovery of Chitin from Brown Crab Shells. ACS Omega, 2021, 6, 28729-28741.	1.6	19
54	Hydrodynamics and mass transfer of a static mixer at high pressure conditions. Chemical Engineering and Processing: Process Intensification, 2006, 45, 224-231.	1.8	18

#	Article	IF	CITATIONS
55	Solubility of Polar and Nonpolar Aromatic Molecules in Subcritical Water: The Role of the Dielectric Constant. Journal of Chemical Theory and Computation, 2019, 15, 6277-6293.	2.3	18
56	Biocatalytic separation of (R, S)-1-phenylethanol enantiomers and fractionation of reaction products with supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 55, 963-970.	1.6	17
57	High pressure phase behavior of the binary system (ethyl lactate+carbon dioxide). Fluid Phase Equilibria, 2013, 360, 129-133.	1.4	15
58	Simultaneous Hydrolysis of Ellagitannins and Extraction of Ellagic Acid from Defatted Raspberry Seeds Using Natural Deep Eutectic Solvents (NADES). Antioxidants, 2022, 11, 254.	2.2	15
59	Supercritical fluid processing of natural based polymers doped with ionic liquids. Chemical Engineering Journal, 2014, 241, 122-130.	6.6	14
60	Unveiling the potential of betaine/polyol-based deep eutectic systems for the recovery of bioactive protein derivative-rich extracts from sardine processing residues. Separation and Purification Technology, 2021, 276, 119267.	3.9	14
61	Structure and Dynamic Properties of a Glycerol–Betaine Deep Eutectic Solvent: When Does a DES Become an Aqueous Solution?. ACS Sustainable Chemistry and Engineering, 2022, 10, 3501-3512.	3.2	13
62	Effect of reactor configuration on the subcritical water hydrolysis of recycled paper mill sludge. Journal of Analytical and Applied Pyrolysis, 2017, 127, 68-74.	2.6	12
63	Improvement of New Dianionic Ionic Liquids vs Monoanionic in Solubility of Poorly Water-Soluble Drugs. Journal of Pharmaceutical Sciences, 2021, 110, 2489-2500.	1.6	12
64	Starch-based polymer–IL composites formed by compression moulding and supercritical fluid foaming for self-supported conductive materials. RSC Advances, 2014, 4, 17161.	1.7	11
65	Valorization of Cork Using Subcritical Water. Molecules, 2020, 25, 4695.	1.7	11
66	Evaluation of Deep Eutectic Systems as an Alternative to Solvents in Painting Conservation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15451-15460.	3.2	11
67	Separation of free fatty acids from deodorizer distillates using choline hydrogen carbonate and supercritical carbon dioxide. Separation and Purification Technology, 2014, 131, 14-18.	3.9	10
68	Tuning surface wrinkles of Janus spheres in supercritical carbon dioxide. Journal of Supercritical Fluids, 2017, 120, 125-131.	1.6	10
69	Preparation of Binary and Ternary Deep Eutectic Systems. Journal of Visualized Experiments, 2019, , .	0.2	10
70	Supercritical CO2 extraction of bioactive lipids from canned sardine waste streams. Journal of CO2 Utilization, 2021, 43, 101359.	3.3	9
71	Selective terpene based therapeutic deep eutectic systems against colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 175, 13-26.	2.0	9
72	Use of natural deep eutectic systems as new cryoprotectant agents in the vitrification of mammalian cells. Scientific Reports, 2022, 12, 8095.	1.6	9

#	Article	IF	CITATIONS
73	Improved storage of influenza HA-VLPs using a trehalose-glycerol natural deep eutectic solvent system. Vaccine, 2021, 39, 3279-3286.	1.7	8
74	Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. Food and Bioproducts Processing, 2021, 130, 154-163.	1.8	8
75	Fractionated extraction of polyphenols from mate tea leaves using a combination of hydrophobic/ hydrophilic NADES. Current Research in Food Science, 2022, 5, 571-580.	2.7	8
76	Extraction of Bioactive Compounds From Cannabis sativa L. Flowers and/or Leaves Using Deep Eutectic Solvents. Frontiers in Nutrition, 2022, 9, 892314.	1.6	8
77	Phase equilibria of the ternary system vinyl acetate/(R,S)-1-phenylethanol/carbon dioxide at high pressure conditions. Fluid Phase Equilibria, 2008, 267, 104-112.	1.4	7
78	High pressure vapor–liquid equilibrium for the ternary system ethanol/(±)-menthol/carbon dioxide. Journal of Supercritical Fluids, 2014, 92, 282-287.	1.6	7
79	Supercritical CO2 Assisted Impregnation of Ibuprofen on Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA). Molecules, 2021, 26, 4772.	1.7	7
80	Assessment of deep eutectic solvents toxicity in zebrafish (Danio rerio). Chemosphere, 2022, 299, 134415.	4.2	7
81	Evaluation of the quality of coffee extracts concentrated by osmotic evaporation. Journal of Food Engineering, 2018, 222, 178-184.	2.7	6
82	Evaluating the Presence of Lycopene-Enriched Extracts from Tomato on Topical Emulsions: Physico-Chemical Characterization and Sensory Analysis. Applied Sciences (Switzerland), 2021, 11, 5120.	1.3	6
83	Evaluation of the Biological Potential of Himanthalia elongata (L.) S.F.Gray and Eisenia bicyclis (Kjellman) Setchell Subcritical Water Extracts. Foods, 2022, 11, 746.	1.9	6
84	Current methodologies for the assessment of deep eutectic systems toxicology: Challenges and perspectives. Journal of Molecular Liquids, 2022, 362, 119675.	2.3	6
85	Molecular Dynamics Studies of Therapeutic Liquid Mixtures and Their Binding to Mycobacteria. Frontiers in Pharmacology, 2021, 12, 626735.	1.6	4
86	Natural deep eutectic systems—A new era of cryopreservation. Advances in Botanical Research, 2021, , 385-409.	0.5	3
87	Therapeutic Liquid Formulations Based on Low Transition Temperature Mixtures for the Incorporation of Anti-Inflammatory Drugs. Pharmaceutics, 2021, 13, 1620.	2.0	3
88	Experimental Determination and Modeling of the Phase Behavior of the CO ₂ + Propionic Anhydride Binary System at High Pressure. Journal of Chemical & Engineering Data, 2017, 62, 210-213.	1.0	2
89	White wine grape pomace as a suitable carbon source for lipid and carotenoid production by fructophilic Rhodorotula babjevae. Journal of Applied Microbiology, 2022, 133, 656-664.	1.4	2
90	Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoates. Bioengineering, 2022, 9, 302.	1.6	2

#	Article	IF	CITATIONS
91	Mimicking Nature In Cryopreservation. , 2018, , .		0