Alexandre Paiva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7338169/publications.pdf

Version: 2024-02-01

91 papers 5,030 citations

33 h-index 91884 69 g-index

94 all docs 94 docs citations

times ranked

94

4656 citing authors

#	Article	IF	CITATIONS
1	Simultaneous Hydrolysis of Ellagitannins and Extraction of Ellagic Acid from Defatted Raspberry Seeds Using Natural Deep Eutectic Solvents (NADES). Antioxidants, 2022, 11, 254.	5.1	15
2	Fractionated extraction of polyphenols from mate tea leaves using a combination of hydrophobic/hydrophilic NADES. Current Research in Food Science, 2022, 5, 571-580.	5.8	8
3	Evaluation of the Biological Potential of Himanthalia elongata (L.) S.F.Gray and Eisenia bicyclis (Kjellman) Setchell Subcritical Water Extracts. Foods, 2022, 11, 746.	4.3	6
4	Structure and Dynamic Properties of a Glycerol–Betaine Deep Eutectic Solvent: When Does a DES Become an Aqueous Solution?. ACS Sustainable Chemistry and Engineering, 2022, 10, 3501-3512.	6.7	13
5	Assessment of deep eutectic solvents toxicity in zebrafish (Danio rerio). Chemosphere, 2022, 299, 134415.	8.2	7
6	White wine grape pomace as a suitable carbon source for lipid and carotenoid production by fructophilic Rhodorotula babjevae. Journal of Applied Microbiology, 2022, 133, 656-664.	3.1	2
7	Extraction of Bioactive Compounds From Cannabis sativa L. Flowers and/or Leaves Using Deep Eutectic Solvents. Frontiers in Nutrition, 2022, 9, 892314.	3.7	8
8	Selective terpene based therapeutic deep eutectic systems against colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 175, 13-26.	4.3	9
9	Use of natural deep eutectic systems as new cryoprotectant agents in the vitrification of mammalian cells. Scientific Reports, 2022, 12, 8095.	3.3	9
10	Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoates. Bioengineering, 2022, 9, 302.	3. 5	2
11	Current methodologies for the assessment of deep eutectic systems toxicology: Challenges and perspectives. Journal of Molecular Liquids, 2022, 362, 119675.	4.9	6
12	Supported liquid membranes based on deep eutectic solvents for gas separation processes. Separation and Purification Technology, 2021, 254, 117593.	7.9	56
13	Supercritical CO2 extraction of bioactive lipids from canned sardine waste streams. Journal of CO2 Utilization, 2021, 43, 101359.	6.8	9
14	Improvement of New Dianionic Ionic Liquids vs Monoanionic in Solubility of Poorly Water-Soluble Drugs. Journal of Pharmaceutical Sciences, 2021, 110, 2489-2500.	3.3	12
15	Unravelling the nature of citric acid: <scp> </scp> -arginine:water mixtures: the bifunctional role of water. Physical Chemistry Chemical Physics, 2021, 23, 1706-1717.	2.8	20
16	Molecular Dynamics Studies of Therapeutic Liquid Mixtures and Their Binding to Mycobacteria. Frontiers in Pharmacology, 2021, 12, 626735.	3.5	4
17	The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules, 2021, 26, 2336.	3.8	30
18	Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety. Processes, 2021, 9, 893.	2.8	21

#	Article	IF	Citations
19	Subcritical Water Extraction and Hydrolysis of Cod (Gadus morhua) Frames to Produce Bioactive Protein Extracts. Foods, 2021, 10, 1222.	4.3	20
20	Evaluating the Presence of Lycopene-Enriched Extracts from Tomato on Topical Emulsions: Physico-Chemical Characterization and Sensory Analysis. Applied Sciences (Switzerland), 2021, 11, 5120.	2.5	6
21	Improved storage of influenza HA-VLPs using a trehalose-glycerol natural deep eutectic solvent system. Vaccine, 2021, 39, 3279-3286.	3.8	8
22	Deep eutectic systems from betaine and polyols – Physicochemical and toxicological properties. Journal of Molecular Liquids, 2021, 335, 116201.	4.9	28
23	Natural deep eutectic systems, an emerging class of cryoprotectant agents. Cryobiology, 2021, 101, 95-104.	0.7	28
24	Supercritical CO2 Assisted Impregnation of Ibuprofen on Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA). Molecules, 2021, 26, 4772.	3.8	7
25	Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. Food and Bioproducts Processing, 2021, 130, 154-163.	3.6	8
26	Effect of water on the structure and dynamics of choline chloride/glycerol eutectic systems. Journal of Molecular Liquids, 2021, 342, 117463.	4.9	41
27	Unveiling the potential of betaine/polyol-based deep eutectic systems for the recovery of bioactive protein derivative-rich extracts from sardine processing residues. Separation and Purification Technology, 2021, 276, 119267.	7.9	14
28	Natural deep eutectic systemsâ€"A new era of cryopreservation. Advances in Botanical Research, 2021, , 385-409.	1.1	3
29	Therapeutic Liquid Formulations Based on Low Transition Temperature Mixtures for the Incorporation of Anti-Inflammatory Drugs. Pharmaceutics, 2021, 13, 1620.	4.5	3
30	Low-Phytotoxic Deep Eutectic Systems as Alternative Extraction Media for the Recovery of Chitin from Brown Crab Shells. ACS Omega, 2021, 6, 28729-28741.	3.5	19
31	Evaluation of Deep Eutectic Systems as an Alternative to Solvents in Painting Conservation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15451-15460.	6.7	11
32	Pseudomonas chlororaphis as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines. New Biotechnology, 2020, 55, 84-90.	4.4	25
33	Valorization of Cork Using Subcritical Water. Molecules, 2020, 25, 4695.	3.8	11
34	Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. Journal of Supercritical Fluids, 2020, 164, 104943.	3.2	41
35	Design and processing of drug delivery formulations of therapeutic deep eutectic systems for tuberculosis. Journal of Supercritical Fluids, 2020, 161, 104826.	3.2	31
36	Fractionation of red wine grape pomace by subcritical water extraction/hydrolysis. Journal of Supercritical Fluids, 2020, 160, 104793.	3.2	31

#	Article	IF	Citations
37	Terpene-Based Natural Deep Eutectic Systems as Efficient Solvents To Recover Astaxanthin from Brown Crab Shell Residues. ACS Sustainable Chemistry and Engineering, 2020, 8, 2246-2259.	6.7	66
38	Unveil the Anticancer Potential of Limomene Based Therapeutic Deep Eutectic Solvents. Scientific Reports, 2019, 9, 14926.	3.3	60
39	Preparation of Binary and Ternary Deep Eutectic Systems. Journal of Visualized Experiments, 2019, , .	0.3	10
40	Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Applied Bio Materials, 2019, 2, 4346-4355.	4.6	96
41	Solubility of Polar and Nonpolar Aromatic Molecules in Subcritical Water: The Role of the Dielectric Constant. Journal of Chemical Theory and Computation, 2019, 15, 6277-6293.	5.3	18
42	Polymer Science and Engineering Using Deep Eutectic Solvents. Polymers, 2019, 11, 912.	4.5	86
43	Deep Eutectic Solvents for Enzymatic Esterification of Racemic Menthol. ACS Sustainable Chemistry and Engineering, 2019, 7, 19943-19950.	6.7	39
44	Semi-continuous extraction/hydrolysis of spent coffee grounds with subcritical water. Journal of Industrial and Engineering Chemistry, 2019, 72, 453-456.	5.8	36
45	Converting Spent Coffee Grounds into Bioactive Extracts with Potential Skin Antiaging and Lightening Effects. ACS Sustainable Chemistry and Engineering, 2018, 6, 6289-6295.	6.7	35
46	Evaluation of the quality of coffee extracts concentrated by osmotic evaporation. Journal of Food Engineering, 2018, 222, 178-184.	5.2	6
47	How do we drive deep eutectic systems towards an industrial reality?. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 81-85.	5.9	39
48	Natural deep eutectic systems as alternative nontoxic cryoprotective agents. Cryobiology, 2018, 83, 15-26.	0.7	89
49	Design of Functional Therapeutic Deep Eutectic Solvents Based on Choline Chloride and Ascorbic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 10355-10363.	6.7	93
50	Synthesis and Physical and Thermodynamic Properties of Lactic Acid and Malic Acid-Based Natural Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2018, 63, 2548-2556.	1.9	37
51	Mimicking Nature In Cryopreservation. , 2018, , .		0
52	Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech, 2017, 18, 2579-2585.	3.3	42
53	A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 296-304.	4.3	162
54	Natural deep eutectic solvents from choline chloride and betaine – Physicochemical properties. Journal of Molecular Liquids, 2017, 241, 654-661.	4.9	194

#	Article	IF	CITATIONS
55	Valorization of white wine grape pomace through application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. Journal of Supercritical Fluids, 2017, 128, 138-144.	3.2	46
56	Green solvents for enhanced impregnation processes in biomedicine. Current Opinion in Green and Sustainable Chemistry, 2017, 5, 82-87.	5.9	33
57	Experimental Determination and Modeling of the Phase Behavior of the CO ₂ + Propionic Anhydride Binary System at High Pressure. Journal of Chemical & Data, 2017, 62, 210-213.	1.9	2
58	Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hosts. Molecular Pharmaceutics, 2017, 14, 3164-3177.	4.6	28
59	Effect of reactor configuration on the subcritical water hydrolysis of recycled paper mill sludge. Journal of Analytical and Applied Pyrolysis, 2017, 127, 68-74.	5.5	12
60	How Do Animals Survive Extreme Temperature Amplitudes? The Role of Natural Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 9542-9553.	6.7	79
61	Tuning surface wrinkles of Janus spheres in supercritical carbon dioxide. Journal of Supercritical Fluids, 2017, 120, 125-131.	3.2	10
62	Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnology, 2016, 33, 206-215.	4.4	75
63	Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids, 2016, 215, 534-540.	4.9	277
64	The green generation of sunscreens: Using coffee industrial sub-products. Industrial Crops and Products, 2016, 80, 93-100.	5.2	74
65	Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 57-66.	4.3	164
66	Design of controlled release systems for THEDESâ€"Therapeutic deep eutectic solvents, using supercritical fluid technology. International Journal of Pharmaceutics, 2015, 492, 73-79.	5.2	139
67	Supercritical carbon dioxide-based integrated continuous extraction of oil from chicken feather meal, and its conversion to biodiesel in a packed-bed enzymatic reactor, at pilot scale. Fuel, 2015, 153, 135-142.	6.4	38
68	Production of Poly(vinyl alcohol) (PVA) Fibers with Encapsulated Natural Deep Eutectic Solvent (NADES) Using Electrospinning. ACS Sustainable Chemistry and Engineering, 2015, 3, 2504-2509.	6.7	35
69	Separation of free fatty acids from deodorizer distillates using choline hydrogen carbonate and supercritical carbon dioxide. Separation and Purification Technology, 2014, 131, 14-18.	7.9	10
70	Supercritical fluid processing of natural based polymers doped with ionic liquids. Chemical Engineering Journal, 2014, 241, 122-130.	12.7	14
71	Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates. International Journal of Biological Macromolecules, 2014, 71, 68-73.	7.5	32
72	Economic analysis of a plant for biodiesel production from waste cooking oil via enzymatic transesterification using supercritical carbon dioxide. Journal of Supercritical Fluids, 2014, 85, 31-40.	3.2	72

#	Article	IF	CITATIONS
73	Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresource Technology, 2014, 157, 360-363.	9.6	110
74	Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustainable Chemistry and Engineering, 2014, 2, 1063-1071.	6.7	1,598
75	Starch-based polymer–IL composites formed by compression moulding and supercritical fluid foaming for self-supported conductive materials. RSC Advances, 2014, 4, 17161.	3.6	11
76	Enhanced performance of supercritical fluid foaming of naturalâ€based polymers by deep eutectic solvents. AICHE Journal, 2014, 60, 3701-3706.	3.6	29
77	High pressure vapor–liquid equilibrium for the ternary system ethanol/(±)-menthol/carbon dioxide. Journal of Supercritical Fluids, 2014, 92, 282-287.	3.2	7
78	Development of Ion-Jelly® membranes. Separation and Purification Technology, 2013, 106, 22-31.	7.9	33
79	High pressure phase behavior of the binary system (ethyl lactate+carbon dioxide). Fluid Phase Equilibria, 2013, 360, 129-133.	2.5	15
80	From coffee industry waste materials to skinâ€friendly products with improved skin fat levels. European Journal of Lipid Science and Technology, 2013, 115, 330-336.	1.5	66
81	Liquid–liquid equilibria for separation of tocopherol from olive oil using ethyl lactate. Chemical Engineering Journal, 2011, 172, 879-884.	12.7	58
82	Biocatalytic separation of (R, S)-1-phenylethanol enantiomers and fractionation of reaction products with supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 55, 963-970.	3.2	17
83	Continuous enzymatic production of biodiesel from virgin and waste sunflower oil in supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 56, 259-264.	3.2	44
84	Phase equilibria of the ternary system vinyl acetate/(R,S)-1-phenylethanol/carbon dioxide at high pressure conditions. Fluid Phase Equilibria, 2008, 267, 104-112.	2.5	7
85	Phase equilibrium-driven selective hydrogenation of limonene in high-pressure carbon dioxide. Green Chemistry, 2007, 9, 427-430.	9.0	49
86	Vapor–liquid equilibria and volume expansion of the tetrahydrofuran/CO2 system: Application to a SAS-atomization process. Journal of Supercritical Fluids, 2007, 41, 343-351.	3.2	29
87	Binary solid–liquid–gas equilibrium of the tripalmitin/CO2 and ubiquinone/CO2 systems. Fluid Phase Equilibria, 2006, 241, 196-204.	2.5	28
88	Hydrodynamics and mass transfer of a static mixer at high pressure conditions. Chemical Engineering and Processing: Process Intensification, 2006, 45, 224-231.	3.6	18
89	Modeling of the PGSS process by crystallization and atomization. AICHE Journal, 2005, 51, 2343-2357.	3.6	38
90	Dynamic model of a countercurrent packed column operating at high pressure conditions. Journal of Supercritical Fluids, 2004, 32, 183-192.	3.2	19

 #	Article	lF	CITATIONS
91	Phase equilibria of the ternary system methyl oleate/squalene/carbon dioxide at high pressure conditions. Journal of Supercritical Fluids, 2004, 29, 77-85.	3.2	23