Jose M Goicolea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7338051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of the train-track-bridge system characteristics in the runnability of high-speed trains against crosswinds - Part I: Running safety. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 224, 104974.	1.7	20
2	Identification of a Human-Structure Interaction Model on an Ultra-Lightweight FRP Footbridge. Applied Sciences (Switzerland), 2021, 11, 6654.	1.3	16
3	Experimental and numerical study on cable breakage equivalent force in cable-stayed structures consisting of low-relaxation seven-wire steel strands. Structures, 2020, 27, 595-606.	1.7	13
4	Analytical and simplified models for dynamic analysis of short skew bridges under moving loads. Advances in Structural Engineering, 2019, 22, 2076-2088.	1.2	8
5	Parametric Pushover Analysis on Elevated RC Pile-Cap Foundations for Bridges in Cohesionless Soils. Journal of Bridge Engineering, 2019, 24, .	1.4	27
6	Railway bridge damage detection using vehicle-based inertial measurements and apparent profile. Engineering Structures, 2017, 153, 421-442.	2.6	40
7	Vibration analysis of short skew bridges due to railway traffic using analytical and simplified models. Procedia Engineering, 2017, 199, 3039-3046.	1.2	2
8	Development of Practical Finite Element Models for Collapse of Reinforced Concrete Structures and Experimental Validation. Shock and Vibration, 2017, 2017, 1-9.	0.3	15
9	Bridge Damage Identification from Moving Load Induced Deflection Based on Wavelet Transform and Lipschitz Exponent. International Journal of Structural Stability and Dynamics, 2016, 16, 1550003.	1.5	30
10	A computational procedure for prediction of ballasted track profile degradation under railway traffic loading. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 1812-1827.	1.3	15
11	A regularised continuum damage model based on the mesoscopic scale for soft tissue. International Journal of Solids and Structures, 2015, 58, 20-33.	1.3	17
12	Evaluación de acciones explosivas sobre estructuras de hormigón armado mediante elementos finitos. Informes De La Construccion, 2015, 67, e095.	0.1	2
13	Comparison of dynamic effects of high-speed traffic load on ballasted track using a simplified two-dimensional and full three-dimensional model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228, 128-142.	1.3	46
14	Lateral Dynamic Models for High-Speed Railway Bridges and Vehicles. IABSE Symposium Report, 2014, , .	0.0	0
15	Consideration of nonlinear wheel–rail contact forces for dynamic vehicle–bridge interaction in high-speed railways. Journal of Sound and Vibration, 2013, 332, 1231-1251.	2.1	127
16	Relevance of a complete road surface description in vehicle–bridge interaction dynamics. Engineering Structures, 2013, 56, 466-476.	2.6	53
17	Fully three-dimensional vehicle dynamics over rough pavement. Proceedings of the Institution of Civil Engineers: Transport, 2013, 166, 144-157.	0.3	8
18	Nonlinear Train-Bridge Lateral Interaction Using a Simplified Wheel-Rail Contact Method Within a Finite Element Framework. Journal of Computational and Nonlinear Dynamics, 2012, 7, .	0.7	9

JOSE M GOICOLEA

#	Article	IF	CITATIONS
19	Mechanical characterisation of the human thoracic descending aorta: experiments and modelling. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 185-193.	0.9	46
20	A methodology for analysing lateral coupled behavior of high speed railway vehicles and structures. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012001.	0.3	5
21	Factors influencing the mechanical behaviour of healthy human descending thoracic aorta. Physiological Measurement, 2010, 31, 1553-1565.	1.2	19
22	On thermodynamically consistent constitutive equations for fiber-reinforced nonlinearly viscoelastic solids with application to biomechanics. Mechanics Research Communications, 2007, 34, 561-571.	1.0	21
23	A volumetric model for growth of arterial walls with arbitrary geometry and loads. Journal of Biomechanics, 2007, 40, 961-971.	0.9	41
24	Influence of Shear Stress on In-Stent Restenosis: In Vivo Study Using 3D Reconstruction and Computational Fluid Dynamics. Revista Espanola De Cardiologia (English Ed), 2006, 59, 20-27.	0.4	10
25	Finite element simulation of the simple tension test in metals. Finite Elements in Analysis and Design, 2006, 42, 1187-1197.	1.7	38
26	Linear and non-linear finite element error estimation based on assumed strain fields. International Journal for Numerical Methods in Engineering, 2002, 55, 413-429.	1.5	5
27	Title is missing!. Multibody System Dynamics, 2002, 7, 3-29.	1.7	17
28	Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy–momentum schemes. Computer Methods in Applied Mechanics and Engineering, 2000, 188, 789-804.	3.4	40
29	Conserving Properties in Constrained Dynamics of Flexible Multibody Systems. Multibody System Dynamics, 2000, 4, 225-244.	1.7	31
30	Análisis de accidentes severos en contenciones nucleares. Informes De La Construccion, 1992, 43, 79-95.	0.1	0
31	Dynamic Response Prediction of Lightweight Pedestrian Structures: Equivalent Crowd-Structure System. , 0, , .		1
32	Dynamic Response of Footbridges in Eurocodes: Towards an Accurate Assessment of Human-Induced Vibrations. , 0, , .		0