Jacobus C Biesmeijer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7337722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Legal Framework for Pontocaspian Biodiversity Conservation in the Danube Delta (Romania and) Tj ETQq1 1 0.784	1314 rgBT 0.9	/Overlock
2	Functional traits explain crayfish invasive success in the Netherlands. Scientific Reports, 2021, 11, 2772.	1.6	10
3	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	1.2	43
4	Decline of unique Pontocaspian biodiversity in the Black Sea Basin: A review. Ecology and Evolution, 2021, 11, 12923-12947.	0.8	12
5	Importance of natural land cover for plant species' conservation: A nationwide study in The Netherlands. PLoS ONE, 2021, 16, e0259255.	1.1	3
6	Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography, 2020, 43, 209-221.	2.1	26
7	Forest and connectivity loss simplify tropical pollination networks. Oecologia, 2020, 192, 577-590.	0.9	22
8	Grassland management for meadow birds in the Netherlands is unfavourable to pollinators. Basic and Applied Ecology, 2020, 43, 52-63.	1.2	7
9	Using social network analysis to assess the Pontocaspian biodiversity conservation capacity in Ukraine. Ecology and Society, 2020, 25, .	1.0	5
10	Social network analysis and the implications for Pontocaspian biodiversity conservation in Romania and Ukraine: A comparative study. PLoS ONE, 2020, 15, e0221833.	1.1	10
11	Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biology, 2019, 25, 3516-3527.	4.2	206
12	Progress on bringing together raptor collections in Europe for contaminant research and monitoring in relation to chemicals regulation. Environmental Science and Pollution Research, 2019, 26, 20132-20136.	2.7	30
13	Risk of potential pesticide use to honeybee and bumblebee survival and distribution: A countryâ€wide analysis for The Netherlands. Diversity and Distributions, 2019, 25, 1709-1720.	1.9	14
14	Scaling up effects of measures mitigating pollinator loss from local―to landscapeâ€level population responses. Methods in Ecology and Evolution, 2018, 9, 1727-1738.	2.2	35
15	Bee conservation: Inclusive solutions. Science, 2018, 360, 389-390.	6.0	16
16	The interplay of climate and land use change affects the distribution of <scp>EU</scp> bumblebees. Global Change Biology, 2018, 24, 101-116.	4.2	84
17	Historical changes in the importance of climate and land use as determinants of Dutch pollinator distributions. Journal of Biogeography, 2017, 44, 696-707.	1.4	23
18	Exploring the relationships between landscape complexity, wild bee species richness and reproduction, and pollination services along a complexity gradient in the Netherlands. Biological Conservation, 2017, 214, 312-319.	1.9	39

JACOBUS C BIESMEIJER

#	Article	IF	CITATIONS
19	Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Global Ecology and Biogeography, 2017, 26, 1126-1137.	2.7	31
20	Effects of pollen species composition on the foraging behaviour and offspring performance of the mason bee Osmia bicornis (L.). Basic and Applied Ecology, 2017, 18, 21-30.	1.2	44
21	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	13.7	1,204
22	Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 2016, 6, 24451.	1.6	49
23	Landscape complexity and farmland biodiversity: Evaluating the CAP target on natural elements. Journal for Nature Conservation, 2016, 30, 19-26.	0.8	32
24	Susceptibility of pollinators to ongoing landscape changes depends on landscape history. Diversity and Distributions, 2015, 21, 1129-1140.	1.9	43
25	Microsatellite Analysis of Museum Specimens Reveals Historical Differences in Genetic Diversity between Declining and More Stable Bombus Species. PLoS ONE, 2015, 10, e0127870.	1.1	21
26	The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150294.	1.2	120
27	Perceptions of priority issues in the conservation of biodiversity and ecosystems in India. Biological Conservation, 2015, 187, 201-211.	1.9	9
28	Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type. Ecology and Evolution, 2015, 5, 4426-4436.	0.8	9
29	Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landscape Ecology, 2015, 30, 2067-2078.	1.9	77
30	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	5.8	656
31	Discrimination of haploid and diploid males of Bombus terrestris (Hymenoptera; Apidae) based on wing shape. Apidologie, 2015, 46, 644-653.	0.9	23
32	Ecological specialization matters: longâ€ŧerm trends in butterfly species richness and assemblage composition depend on multiple functional traits. Diversity and Distributions, 2015, 21, 792-802.	1.9	95
33	Pollinator conservation—the difference between managing for pollination services and preserving pollinator diversity. Current Opinion in Insect Science, 2015, 12, 93-101.	2.2	118
34	Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PLoS ONE, 2014, 9, e82996.	1.1	171
35	Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agricultural and Forest Entomology, 2014, 16, 119-128.	0.7	154
36	The effect of proximity to a honeybee apiary on bumblebee colony fitness, development, and performance. Apidologie, 2014, 45, 504-513.	0.9	36

JACOBUS C BIESMEIJER

#	Article	IF	CITATIONS
37	Climateâ€driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits. Global Change Biology, 2014, 20, 2815-2828.	4.2	57
38	Parasite Pressures on Feral Honey Bees (Apis mellifera sp.). PLoS ONE, 2014, 9, e105164.	1.1	44
39	Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 2013, 28, 524-530.	4.2	320
40	Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography, 2013, 36, 649-656.	2.1	129
41	Comparison of pollinators and natural enemies: a metaâ€analysis of landscape and local effects on abundance and richness in crops. Biological Reviews, 2013, 88, 1002-1021.	4.7	202
42	Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria – Dutch Hoverflies as a Case Study. PLoS ONE, 2013, 8, e63708.	1.1	207
43	Species Distribution Models for Crop Pollination: A Modelling Framework Applied to Great Britain. PLoS ONE, 2013, 8, e76308.	1.1	54
44	Temporal-Spatial Dynamics in Orthoptera in Relation to Nutrient Availability and Plant Species Richness. PLoS ONE, 2013, 8, e71736.	1.1	11
45	Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic and Applied Ecology, 2012, 13, 363-370.	1.2	101
46	Landscape context and elevation affect pollinator communities in intensive apple orchards. Basic and Applied Ecology, 2012, 13, 681-689.	1.2	63
47	Pollinator community responses to the spatial population structure of wild plants: A pan-European approach. Basic and Applied Ecology, 2012, 13, 489-499.	1.2	28
48	Pervasiveness of Parasites in Pollinators. PLoS ONE, 2012, 7, e30641.	1.1	137
49	Alien and native plants show contrasting responses to climate and land use in Europe. Clobal Ecology and Biogeography, 2011, 20, 367-379.	2.7	36
50	Biodiversity change is scale-dependent: an example from Dutch and UK hoverflies (Diptera, Syrphidae). Ecography, 2011, 34, 392-401.	2.1	26
51	Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecological Research, 2011, 26, 969-983.	0.7	135
52	Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecological Monographs, 2011, 81, 277-293.	2.4	83
53	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	0.7	64
54	Assessing continental-scale risks for generalist and specialist pollinating bee species under climate change. BioRisk, 2011, 6, 1-18.	0.2	15

JACOBUS C BIESMEIJER

#	Article	IF	CITATIONS
55	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	4.7	259
56	Effects of patch size and density on flower visitation and seed set of wild plants: a panâ€European approach. Journal of Ecology, 2010, 98, 188-196.	1.9	199
57	Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2075-2082.	1.2	217
58	Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 2010, 25, 345-353.	4.2	4,333
59	MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS. Ecological Monographs, 2008, 78, 653-671.	2.4	562
60	The structure of eusocial bee assemblages in Brazil. Apidologie, 2006, 37, 240-258.	0.9	77
61	Stingless bees: biology and management. Apidologie, 2006, 37, 121-123.	0.9	4
62	The use of waggle dance information by honey bees throughout their foraging careers. Behavioral Ecology and Sociobiology, 2005, 59, 133-142.	0.6	169
63	Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers. Die Naturwissenschaften, 2005, 92, 444-450.	0.6	58
64	Recruitment and communication of food source location in three species of stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie, 2005, 36, 313-324.	0.9	42
65	Information flow and organization of stingless bee foraging. Apidologie, 2004, 35, 143-157.	0.9	97
66	The Occurrence and Context of the Shaking Signal in Honey Bees (Apis mellifera) Exploiting Natural Food Sources. Ethology, 2003, 109, 1009-1020.	0.5	18
67	The use of field-based social information in eusocial foragers: local enhancement among nestmates and heterospecifics in stingless bees. Ecological Entomology, 2003, 28, 369-379.	1.1	101
68	Self-organization in collective honeybee foraging: emergence of symmetry breaking, cross inhibition and equal harvest-rate distribution. Behavioral Ecology and Sociobiology, 2002, 51, 557-569.	0.6	41
69	Nectar foraging by stingless bees in Costa Rica: botanical and climatological influences on sugar concentration of nectar collected by Melipona. Apidologie, 1999, 30, 43-55.	0.9	21
70	Social foraging in stingless bees: how colonies of Melipona fasciata choose among nectar sources. Behavioral Ecology and Sociobiology, 1999, 46, 129-140.	0.6	40
71	Niche differentiation in nectar-collecting stingless bees: the influence of morphology, floral choice and interference competition. Ecological Entomology, 1999, 24, 380-388.	1.1	57
72	The role of internal and external information in foraging decisions of Melipona workers (Hymenoptera: Meliponinae). Behavioral Ecology and Sociobiology, 1998, 42, 107-116.	0.6	61

#	Article	IF	CITATIONS
73	Modelling collective foraging by means of individual behaviour rules in honey-bees. Behavioral Ecology and Sociobiology, 1998, 44, 109-124.	0.6	119
74	Climatic Risk and Distribution Atlas of European Bumblebees. BioRisk, 0, 10, 1-236.	0.2	171