Paul Hodgkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7337383/publications.pdf

Version: 2024-02-01

		126708	143772
100	3,878	33	57
papers	citations	h-index	g-index
113	113	113	3175
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Resolving alternative structure determinations of indapamide using ¹³ C solid-state NMR. Chemical Communications, 2022, 58, 4767-4770.	2.2	2
2	A study of the dynamics and structure of the dielectric anomaly within the molecular solid TEA(TCNQ) < sub > 2 < /sub > . Physical Chemistry Chemical Physics, 2022, 24, 7481-7492.	1.3	2
3	Characterization of crystalline and amorphous forms of irbesartan by multi-nuclear solid-state NMR. Solid State Nuclear Magnetic Resonance, 2022, 118, 101783.	1.5	5
4	Paramagnetic solid-state NMR assignment and novel chemical conversion of the aldehyde group to dihydrogen <i>ortho</i> ester and hemiacetal moieties in copper(<scp>ii</scp>)- and cobalt(<scp>ii</scp>)-pyridinecarboxaldehyde complexes. RSC Advances, 2021, 11, 20216-20231.	1.7	9
5	Towards Accurate Predictions of Proton NMR Spectroscopic Parameters in Molecular Solids. ChemPhysChem, 2020, 21, 2075-2083.	1.0	14
6	Synthesis and structural characterization of cocrystals of isoniazid and cinnamic acid derivatives. Journal of Molecular Structure, 2020, 1219, 128621.	1.8	12
7	NMR crystallography of molecular organics. Progress in Nuclear Magnetic Resonance Spectroscopy, 2020, 118-119, 10-53.	3.9	95
8	Resolving alternative organic crystal structures using density functional theory and NMR chemical shifts. Chemical Science, 2020, 11, 2987-2992.	3.7	18
9	Improving Confidence in Crystal Structure Solutions Using NMR Crystallography: The Case of \hat{l}^2 -Piroxicam. Crystal Growth and Design, 2018, 18, 3339-3351.	1.4	34
10	Shape-selective crystallisation of fluxional carbon cages. Chemical Science, 2018, 9, 8631-8636.	3.7	22
11	Perspective: Current advances in solid-state NMR spectroscopy. Journal of Chemical Physics, 2018, 149, 040901.	1.2	28
12	Proton transfer in guanine–cytosine base pair analogues studied by NMR spectroscopy and PIMD simulations. Faraday Discussions, 2018, 212, 331-344.	1.6	28
13	Rationalising Heteronuclear Decoupling in Refocussing Applications of Solidâ€State NMR Spectroscopy. ChemPhysChem, 2017, 18, 394-405.	1.0	7
14	Structure and physicochemical characterization of a naproxen–picolinamide cocrystal. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 168-175.	0.2	28
15	Exploring Systematic Discrepancies in DFT Calculations of Chlorine Nuclear Quadrupole Couplings. Journal of Physical Chemistry A, 2017, 121, 4103-4113.	1.1	19
16	Furosemide's one little hydrogen atom: NMR crystallography structure verification of powdered molecular organics. Chemical Communications, 2016, 52, 6685-6688.	2.2	49
17	Visualization and processing of computed solid-state NMR parameters: MagresView and MagresPython. Solid State Nuclear Magnetic Resonance, 2016, 78, 64-70.	1.5	57
18	Testing the limits of NMR crystallography: the case of caffeine–citric acid hydrate. CrystEngComm, 2016, 18, 6700-6707.	1.3	25

#	Article	IF	Citations
19	Perspectives: In crystallography we trust. C&EN Global Enterprise, 2016, 94, 30-31.	0.0	1
20	Stray-field NMR diffusion q -space diffraction imaging of monodisperse coarsening foams. Journal of Colloid and Interface Science, 2016, 476, 20-28.	5.0	4
21	Characterising the role of water in sildenafil citrate by NMR crystallography. CrystEngComm, 2016, 18, 1054-1063.	1.3	25
22	Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2016, 12, 968-973.	2.3	54
23	Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR. Molecular Pharmaceutics, 2016, 13, 211-222.	2.3	30
24	Solid-state NMR studies of nucleic acid components. RSC Advances, 2015, 5, 12300-12310.	1.7	27
25	A furosemide–isonicotinamide cocrystal: an investigation of properties and extensive structural disorder. CrystEngComm, 2015, 17, 6707-6715.	1.3	38
26	Na ⁺ mobility in sodium strontium silicate fast ion conductors. Chemical Communications, 2015, 51, 17163-17165.	2.2	21
27	Resonance-assisted stabilisation of hydrogen bonds probed by NMR spectroscopy and path integral molecular dynamics. Chemical Communications, 2015, 51, 13986-13989.	2.2	20
28	Simulating spin dynamics in organic solids under heteronuclear decoupling. Solid State Nuclear Magnetic Resonance, 2015, 70, 28-37.	1.5	5
29	Bisoprolol and Bisoprolol-Valsartan Compatibility Studied by Differential Scanning Calorimetry, Nuclear Magnetic Resonance and X-Ray Powder Diffractometry. Pharmaceutical Research, 2015, 32, 414-429.	1.7	22
30	Solid-state NMR and computational investigation of solvent molecule arrangement and dynamics in isostructural solvates of droperidol. Solid State Nuclear Magnetic Resonance, 2015, 65, 12-20.	1.5	21
31	Dynamics of water molecules and sodium ions in solid hydrates of nucleotides. CrystEngComm, 2014, 16, 6756-6764.	1.3	12
32	Effects of Quantum Nuclear Delocalisation on NMR Parameters from Path Integral Molecular Dynamics. Chemistry - A European Journal, 2014, 20, 2201-2207.	1.7	52
33	A molecular dynamics study of the effects of fast molecular motions on solid-state NMR parameters. CrystEngComm, 2013, 15, 8705.	1.3	77
34	Well-Tempered Metadynamics as a Tool for Characterizing Multi-Component, Crystalline Molecular Machines. Journal of Physical Chemistry B, 2013, 117, 12286-12295.	1.2	21
35	NMR characterisation of dynamics in solvates and desolvates of formoterol fumarate. Physical Chemistry Chemical Physics, 2013, 15, 6422.	1.3	25
36	Spectroscopic and Structural Characterization of the CyNHC Adduct of B ₂ pin ₂ in Solution and in the Solid State. Journal of Organic Chemistry, 2012, 77, 785-789.	1.7	121

3

#	Article	IF	CITATIONS
37	NMR characterisation of structure in solvates and polymorphs of formoterol fumarate. Magnetic Resonance in Chemistry, 2012, 50, 680-690.	1.1	14
38	Unexpected effects of third-order cross-terms in heteronuclear spin systems under simultaneous radio-frequency irradiation and magic-angle spinning NMR. Journal of Chemical Physics, 2012, 136, 084503.	1,2	7
39	Computation of magnetic shielding to simultaneously validate a crystal structure and assign a solid-state NMR spectrum. Journal of Molecular Structure, 2012, 1015, 192-201.	1.8	22
40	A Multi-Technique Approach to the Study of Structural Stability and Desolvation of Two Unusual Channel Hydrate Solvates of Finasteride. Journal of Pharmaceutical Sciences, 2012, 101, 176-186.	1.6	21
41	Towards homonuclear J solid-state NMR correlation experiments for half-integer quadrupolar nuclei: experimental and simulated 11B MAS spin-echo dephasing and calculated 2JBB coupling constants for lithium diborate. Physical Chemistry Chemical Physics, 2011, 13, 5778.	1.3	34
42	Structural Properties of Carboxylic Acid Dimers Confined within the Urea Tunnel Structure: An MD Simulation Study. Journal of Physical Chemistry B, 2011, 115, 2791-2800.	1.2	16
43	High-Resolution 1H NMR Spectroscopy of Solids. Annual Reports on NMR Spectroscopy, 2011, 72, 185-223.	0.7	43
44	Computation and NMR crystallography of terbutaline sulfate. Magnetic Resonance in Chemistry, 2010, 48, S103-S112.	1.1	76
45	Elucidation of Structure and Dynamics in Solid Octafluoronaphthalene from Combined NMR, Diffraction, And Molecular Dynamics Studies. Journal of the American Chemical Society, 2010, 132, 5179-5185.	6.6	26
46	Structures and Phase Transitions in (MoO ₂) ₂ P ₂ O ₇ . Inorganic Chemistry, 2010, 49, 2290-2301.	1.9	27
47	Understanding two-pulse phase-modulated decoupling in solid-state NMR. Journal of Chemical Physics, 2009, 130, 114510.	1.2	60
48	Use of rotary echoes in <mml:math altimg="si8.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml:mimow><mml< td=""><td>1.2</td><td>12</td></mml<></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mimow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	1.2	12
49	quantitative study of molecular dynamics. Chemical Physics Letters, 2009, 475, 58-63. Solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 6875.	1.3	9
50	Insights into homonuclear decoupling from efficient numerical simulation: Techniques and examples. Journal of Magnetic Resonance, 2008, 192, 183-196.	1.2	23
51	Structural characterisation of two pharmaceutically important steroids by solid-state NMR. New Journal of Chemistry, 2008, 32, 1796.	1.4	14
52	Characterization of Polymorphs and Solvates of Terbutaline Sulfate. Crystal Growth and Design, 2008, 8, 80-90.	1.4	36
53	Combining insights from solid-state NMR and first principles calculation: applications to the 19F NMR of octafluoronaphthalene. Physical Chemistry Chemical Physics, 2007, 9, 2389.	1.3	39
54	Quantifying hydrogen-bonding strength: the measurement of 2hJNN couplings in self-assembled guanosines by solid-state 15N spin-echo MAS NMR. Physical Chemistry Chemical Physics, 2007, 9, 3416.	1.3	60

#	Article	IF	CITATIONS
55	On the orientational dependence of resolution in 1H solid-state NMR, and its role in MAS, CRAMPS and delayed-acquisition experiments. Magnetic Resonance in Chemistry, 2007, 45, S93-S100.	1.1	15
56	Using 170 solid-state NMR and first principles calculation to characterise structure and dynamics in inorganic framework materials. Magnetic Resonance in Chemistry, 2007, 45, S144-S155.	1.1	31
57	Chemical shift computations on a crystallographic basis: some reflections and comments. Magnetic Resonance in Chemistry, 2007, 45, \$174-\$186.	1.1	197
58	Structural Study of Polymorphs and Solvates of Finasteride. Journal of Pharmaceutical Sciences, 2007, 96, 1380-1397.	1.6	65
59	Quantitative analysis of 170 exchange and relaxation data: Application to zirconium tungstate. Solid State Nuclear Magnetic Resonance, 2006, 30, 98-105.	1.5	6
60	Characterization of Oxygen Dynamics in ZrW2O8 ChemInform, 2006, 37, no.	0.1	0
61	Quantification of homonuclear dipolar coupling networks from magic-angle spinning1H NMR. Molecular Physics, 2006, 104, 293-304.	0.8	51
62	Origins of linewidth in H1 magic-angle spinning NMR. Journal of Chemical Physics, 2006, 125, 144508.	1.2	121
63	Quantification of bambuterol hydrochloride in a formulated product using solid-state NMR. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 858-864.	1.4	56
64	Heteronuclear decoupling in the NMR of solids. Progress in Nuclear Magnetic Resonance Spectroscopy, 2005, 46, 197-222.	3.9	102
65	Synthesis and NMR studies of 170 enriched AM2O8 phases. Solid State Sciences, 2005, 7, 819-826.	1.5	14
66	Characterisation of indomethacin and nifedipine using variable-temperature solid-state NMR. Magnetic Resonance in Chemistry, 2005, 43, 881-892.	1.1	61
67	Hydrogen Bonding and Dynamic Behaviour in Crystals and Polymorphs of Dicarboxylic–Diamine Adducts: A Comparison between NMR Parameters and X-ray Diffraction Studies. Chemistry - A European Journal, 2005, 11, 7461-7471.	1.7	52
68	Characterization of Oxygen Dynamics in ZrW2O8. Journal of the American Chemical Society, 2005, 127, 15175-15181.	6.6	33
69	NMR studies of31P, 1H spin pairs in solid tin(II) phosphite and tin(II) hydrogen phosphate. Molecular Physics, 2004, 102, 877-882.	0.8	6
70	Solid-state109Ag CP/MAS NMR spectroscopy of some diammine silver(I) complexes. Magnetic Resonance in Chemistry, 2004, 42, 819-826.	1.1	21
71	The Nature of Oxygen Exchange in ZrW2O8 Revealed by Two-Dimensional Solid-State17O NMR ChemInform, 2004, 35, no.	0.1	1
72	Solid-state NMR studies of some tin(II) compounds. Solid State Nuclear Magnetic Resonance, 2004, 26, 160-171.	1.5	21

#	Article	IF	Citations
73	Resolution of 13C–19F interactions in the 13C NMR of spinning solids and liquid crystals. Journal of Magnetic Resonance, 2004, 168, 124-131.	1.2	9
74	The nature of oxygen exchange in ZrW2O8 revealed by two-dimensional solid-state 170 NMR. Chemical Communications, 2004, , 392.	2.2	28
75	Heteronuclear decoupling in NMR of Liquid Crystals using continuous phase modulation. Chemical Physics Letters, 2003, 368, 511-522.	1.2	42
76	Improved heteronuclear decoupling schemes for solid-state magic angle spinning NMR by direct spectral optimization. Chemical Physics Letters, 2003, 376, 259-267.	1.2	63
77	Interference of homonuclear decoupling and exchange in the solid-state NMR of perfluorocyclohexane. Journal of Magnetic Resonance, 2003, 161, 234-241.	1.2	7
78	Transverse Dephasing Optimized Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2003, 125, 13938-13939.	6.6	104
79	Improved Proton Decoupling in NMR Spectroscopy of Crystalline Solids Using the Spinal-64 Sequence. , 2002, , 69-74.		3
80	Improved Proton Decoupling in NMR Spectroscopy of Crystalline Solids Using the S PINAL -64 Sequence. Monatshefte FÃ 1 /4r Chemie, 2002, 133, 1549-1554.	0.9	45
81	Line-splitting and broadening effects from 19F in the 13CNMR of liquid crystals and solids. Chemical Physics Letters, 2001, 344, 68-74.	1.2	14
82	NMR studies of exchange between triazine rotamers. Magnetic Resonance in Chemistry, 2000, 38, 504-511.	1.1	39
83	Simulation of extended periodic systems of nuclear spins. Chemical Physics Letters, 2000, 326, 515-522.	1.2	32
84	Numerical simulation of solid-state NMR experiments. Progress in Nuclear Magnetic Resonance Spectroscopy, 2000, 36, 201-239.	3.9	100
85	Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chemical Physics Letters, 2000, 319, 253-260.	1.2	282
86	Experimental observation of periodic quasi-equilibria in solid-state NMR. Chemical Physics Letters, 1999, 308, 381-389.	1.2	30
87	The Accuracy of Distance Measurements in Solid-State NMR. Journal of Magnetic Resonance, 1999, 139, 46-59.	1.2	67
88	Quasi equilibria in solid-state NMR. Chemical Physics Letters, 1998, 293, 110-118.	1.2	20
89	Assignment and Measurement of Deuterium Quadrupolar Couplings in Liquid Crystals by Deuteriumâ ^a Carbon NMR Correlation Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 3718-3723.	1.2	28
90	Deuterium to carbon cross-polarization in liquid crystals. Journal of Chemical Physics, 1998, 109, 1873-1884.	1.2	21

#	Article	IF	CITATIONS
91	Sampling and the quantification of NMR data. Advances in Magnetic and Optical Resonance, 1997, 20, 187-244.	1.7	10
92	Cross-polarization efficiency in INS systems using adiabatic RF sweeps. Journal of Chemical Physics, 1997, 107, 8742-8751.	1.2	15
93	Deuteriumâ [^] Carbon NMR Correlation Spectroscopy in Oriented Materials. Journal of the American Chemical Society, 1997, 119, 12000-12001.	6.6	22
94	The reliability of the determination of tensor parameters by solid-state nuclear magnetic resonance. Journal of Chemical Physics, 1997, 107, 4808-4816.	1.2	106
95	A Novel Detection–Estimation Scheme for Noisy NMR Signals: Applications to Delayed Acquisition Data. Journal of Magnetic Resonance, 1997, 128, 30-41.	1.2	102
96	Selective Data Acquisition in NMR. The Quantification of Anti-phase Scalar Couplings. Journal of Magnetic Resonance Series A, 1996, 120, 18-30.	1.6	11
97	Optimal Sampling Strategies for the Measurement of Spin–Spin Relaxation Times. Journal of Magnetic Resonance Series B, 1996, 113, 25-34.	1.6	104
98	Optimizing Spatially Localized NMR. Journal of Magnetic Resonance Series B, 1995, 106, 261-269.	1.6	5
99	Tailored Acquisition in Chemical-Shift Imaging. Journal of Magnetic Resonance Series B, 1994, 105, 256-259.	1.6	5
100	Application of Maximum Entropy Methods to Three-Dimensional NMR Spectroscopy. Journal of Magnetic Resonance Series B, 1993, 101, 218-222.	1.6	10