
Edwin D Grosholz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7337238/publications.pdf Version: 2024-02-01

FOWIN D CROSHOLZ

#	Article	IF	CITATIONS
1	Balanced polymorphism fuels rapid selection in an invasive crab despite high gene flow and low genetic diversity. Molecular Ecology, 2022, 31, 55-69.	2.0	14
2	Biological invasions alter consumer–stress relationships along an estuarine gradient. Ecology, 2022, , e3695.	1.5	0
3	Mapping oysters on the Pacific coast of North America: A coast-wide collaboration to inform enhanced conservation. PLoS ONE, 2022, 17, e0263998.	1.1	4
4	Functional eradication as a framework for invasive species control. Frontiers in Ecology and the Environment, 2021, 19, 98-107.	1.9	92
5	Local and regional variation in effects of burrowing crabs on plant community structure. Ecology, 2021, 102, e03244.	1.5	10
6	Abiotic and biotic influences on the performance of two biological control agents, Neochetina bruchi and N. eichhorniae, in the Sacramento-San Joaquin River Delta, California (USA). Biological Control, 2021, 153, 104495.	1.4	3
7	Challenges for the management of the invasive blackberry (<i>Rubus niveus</i>) in the restoration of the Scalesia forest in the Galapagos Islands. Invasive Plant Science and Management, 2021, 14, 20-28.	0.5	4
8	Stage-specific overcompensation, the hydra effect, and the failure to eradicate an invasive predator. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
9	Engaging the importance of community scientists in the management of an invasive marine pest. California Agriculture, 2021, 75, 40-45.	0.5	1
10	Conservation of Marine Foundation Species: Learning from Native Oyster Restoration from California to British Columbia. Estuaries and Coasts, 2021, 44, 1723-1743.	1.0	15
11	Conservation aquaculture as a tool for imperiled marine species: Evaluation of opportunities and risks for Olympia oysters, Ostrea lurida. PLoS ONE, 2021, 16, e0252810.	1.1	15
12	Assessing the risk of plant species invasion under different climate change scenarios in California. Invasive Plant Science and Management, 2021, 14, 172-182.	0.5	4
13	Scaling up experimental stress responses of grass invasion to predictions of continentalâ€level range suitability. Ecology, 2021, 102, e03417.	1.5	5
14	Predicting burrowing crab impacts on salt marsh plants. Ecosphere, 2021, 12, e03803.	1.0	4
15	Effects of seasonal upwelling and runoff on water chemistry and growth and survival of native and commercial oysters. Limnology and Oceanography, 2020, 65, 224-235.	1.6	13
16	Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf

17	The unaddressed threat of invasive animals in U.S. National Parks. Biological Invasions, 2020, 22, 177-188.	1.2	13
18	Timeâ€lagged impacts of extreme, multiâ€year drought on tidal salt marsh plant invasion. Ecosphere, 2020, 11, e03155.	1.0	6

EDWIN D GROSHOLZ

#	Article	IF	CITATIONS
19	Nutrients mitigate the impacts of extreme drought on plant invasions. Ecology, 2020, 101, e02980.	1.5	24
20	Habitats and fish communities at mesophotic depths in the Mexican Pacific. Journal of Biogeography, 2020, 47, 1552-1563.	1.4	5
21	Supporting <i>Spartina</i> : Interdisciplinary perspective shows <i>Spartina</i> as a distinct solid genus. Ecology, 2019, 100, e02863.	1.5	39
22	Predator foraging mode controls the effect of antipredator behavior in a tritrophic model. Theoretical Ecology, 2019, 12, 531-544.	0.4	4
23	Into the weeds: Matching importation history to genetic consequences and pathways in two widely used biological control agents. Evolutionary Applications, 2019, 12, 773-790.	1.5	18
24	The dynamics of open populations: integration of top–down, bottom–up and supply–side influences on intertidal oysters. Oikos, 2019, 128, 584-595.	1.2	9
25	New sources for the emergence of new invaders. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2270-2271.	3.3	3
26	Temperatureâ€induced range expansion of a subtropical crab along the California coast. Marine Ecology, 2018, 39, e12528.	0.4	8
27	Ghost of invasion past: legacy effects on community disassembly following eradication of an invasive ecosystem engineer. Ecosphere, 2017, 8, e01711.	1.0	25
28	Timing of stressors alters interactive effects on a coastal foundation species. Ecology, 2017, 98, 2468-2478.	1.5	18
29	Trophic sensitivity of invasive predator and native prey interactions: integrating environmental context and climate change. Functional Ecology, 2017, 31, 642-652.	1.7	37
30	San Francisco Bay Living Shorelines. , 2017, , 333-362.		6
31	Environmental stress mediates trophic cascade strength and resistance to invasion. Ecosphere, 2016, 7, e01247.	1.0	27
32	Evolutionary Novelty and the Behaviour of Introduced Predators. , 2016, , 199-218.		4
33	Coastâ€wide recruitment dynamics of Olympia oysters reveal limited synchrony and multiple predictors of failure. Ecology, 2016, 97, 3503-3516.	1.5	28
34	Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 2016, 7, 12485.	5.8	808
35	Guidelines for evaluating performance of oyster habitat restoration. Restoration Ecology, 2015, 23, 737-745.	1.4	125
36	Testing local and global stressor impacts on a coastal foundation species using an ecologically realistic framework. Global Change Biology, 2015, 21, 2488-2499.	4.2	54

EDWIN D GROSHOLZ

#	Article	IF	CITATIONS
37	Aquaculture as a vector for marine invasions in California. Biological Invasions, 2015, 17, 1471-1484.	1.2	33
38	Thermogeographic variation in body size of Carcinus maenas, the European green crab. Marine Biology, 2015, 162, 1625-1635.	0.7	18
39	Overgrowth of eelgrass by the invasive colonial tunicate Didemnum vexillum : Consequences for tunicate and eelgrass growth and epifauna abundance. Journal of Experimental Marine Biology and Ecology, 2015, 473, 188-194.	0.7	8
40	A vector analysis of marine ornamental species in California. Management of Biological Invasions, 2015, 6, 13-29.	0.5	5
41	Optimal approaches for balancing invasive species eradication and endangered species management. Science, 2014, 344, 1028-1031.	6.0	92
42	Poised to prosper? A crossâ€system comparison of climate change effects on native and nonâ€native species performance. Ecology Letters, 2013, 16, 261-270.	3.0	256
43	Biotic resistance in marine environments. Ecology Letters, 2013, 16, 821-833.	3.0	110
44	Will extreme climatic events facilitate biological invasions?. Frontiers in Ecology and the Environment, 2012, 10, 249-257.	1.9	402
45	Experimental Test of the Effects of a Nonâ€Native Invasive Species on a Wintering Shorebird. Conservation Biology, 2012, 26, 472-481.	2.4	6
46	Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, 2012, 10, 20-28.	1.9	195
47	Modeling the impacts of the European green crab on commercial shellfisheries. , 2011, 21, 915-924.		22
48	Multiple and long-term effects of an introduced predatory crab. Marine Ecology - Progress Series, 2011, 429, 145-155.	0.9	16
49	Avoidance by grazers facilitates spread of an invasive hybrid plant. Ecology Letters, 2010, 13, 145-153.	3.0	24
50	Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades. Oecologia, 2009, 160, 563-575.	0.9	83
51	Tackling aquatic invasions: risks and opportunities for the aquarium fish industry. Biological Invasions, 2009, 11, 773-785.	1.2	67
52	Does invasion of hybrid cordgrass change estuarine food webs?. Biological Invasions, 2009, 11, 917-926.	1.2	22
53	Multitrophic Effects of Invasions in Marine and Estuarine Systems. Ecological Studies, 2009, , 305-324.	0.4	15
54	The Invasive Species Challenge in Estuarine and Coastal Environments: Marrying Management and Science. Estuaries and Coasts, 2008, 31, 3-20.	1.0	179

#	Article	IF	CITATIONS
55	NITROGEN INPUTS PROMOTE THE SPREAD OF AN INVASIVE MARSH GRASS. Ecological Applications, 2007, 17, 1886-1898.	1.8	192
56	THE INTRODUCED SABELLID POLYCHAETE TEREBRASABELLA HETEROUNCINATA IN CALIFORNIA: TRANSMISSION, METHODS OF CONTROL AND SURVEY FOR PRESENCE IN NATIVE GASTROPOD POPULATIONS. Journal of Shellfish Research, 2007, 26, 869-876.	0.3	11
57	Effect of native and invasive cordgrass on Macoma petalum density, growth, and isotopic signatures. Estuarine, Coastal and Shelf Science, 2007, 71, 517-522.	0.9	19
58	Influence of invasive Spartina growth stages on associated macrofaunal communities. Biological Invasions, 2007, 9, 975-993.	1.2	63
59	DISTURBANCE INFLUENCES OYSTER COMMUNITY RICHNESS AND EVENNESS, BUT NOT DIVERSITY. Ecology, 2006, 87, 2378-2388.	1.5	72
60	MECHANISMS GENERATING MODIFICATION OF BENTHOS FOLLOWING TIDAL FLAT INVASION BY A SPARTINA HYBRID. , 2006, 16, 1391-1404.		125
61	Native and Introduced Ecosystem Engineers Produce Contrasting Effects on Estuarine Infaunal Communities. Biological Invasions, 2006, 8, 683-695.	1.2	59
62	The influence of flood cycle and fish predation on invertebrate production on a restored California floodplain. Hydrobiologia, 2006, 568, 91-109.	1.0	55
63	INVASIVE CORDGRASS MODIFIES WETLAND TROPHIC FUNCTION. Ecology, 2006, 87, 419-432.	1.5	211
64	Spatial and temporal movement of the lined shore crab Pachygrapsus crassipes in salt marshes and its utility as an indicator of habitat condition. Marine Ecology - Progress Series, 2006, 314, 271-281.	0.9	17
65	Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1088-1091.	3.3	197
66	Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hybrid Spartina, with comparison to uninvaded habitats. Marine Ecology - Progress Series, 2005, 292, 111-126.	0.9	127
67	Biological invasions drive size increases in marine and estuarine invertebrates. Ecology Letters, 2003, 6, 700-705.	3.0	89
68	Ecological and evolutionary consequences of coastal invasions. Trends in Ecology and Evolution, 2002, 17, 22-27.	4.2	563
69	Preliminary reports from the Caulerpa taxifolia invasion in southern California. Marine Ecology - Progress Series, 2002, 233, 307-310.	0.9	48
70	Small spatial-scale differentiation among populations of an introduced colonial invertebrate. Oecologia, 2001, 129, 58-64.	0.9	23
71	THE IMPACTS OF A NONINDIGENOUS MARINE PREDATOR IN A CALIFORNIA BAY. Ecology, 2000, 81, 1206-1224.	1.5	321
72	Nonâ€indigenous species as stressors in estuarine and marine communities: Assessing invasion impacts and interactions. Limnology and Oceanography, 1999, 44, 950-972.	1.6	354

EDWIN D GROSHOLZ

#	Article	IF	CITATIONS
73	Potential ecological implications from the introduction of the European green crab, <i>Carcinus maenas</i> (Linneaus), to British Columbia, Canada, and Washington, USA. Journal of Natural History, 1998, 32, 1587-1598.	0.2	58
74	Global Invasions of Marine and Estuarine Habitats by Non-Indigenous Species: Mechanisms, Extent, and Consequences. American Zoologist, 1997, 37, 621-632.	0.7	831
75	Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crab Carcinus maenas. Biological Conservation, 1996, 78, 59-66.	1.9	257
76	Ecology of Infectious Diseases in Natural Populations Ecology, 1996, 77, 2577.	1.5	0
77	Contrasting Rates of Spread for Introduced Species in Terrestrial and Marine Systems. Ecology, 1996, 77, 1680-1686.	1.5	149
78	Does spatial heterogeneity and genetic variation in populations of the xanthid crab Rhithropanopeus harrisii (Gould) influence the prevalence of an introduced parasitic castrator?. Journal of Experimental Marine Biology and Ecology, 1995, 187, 129-145.	0.7	19
79	The influence of habitat heterogeneity on host-pathogen population dynamics. Oecologia, 1993, 96, 347-353.	0.9	28
80	Interactions of Intraspecific, Interspecific, and Apparent Competition with Host-Pathogen Population Dynamics. Ecology, 1992, 73, 507-514.	1.5	76
81	Population dynamics of the ribbed mussel, Geukensia demissa: The costs and benefits of an aggregated distribution. Oecologia, 1985, 67, 192-204.	0.9	297
82	THE IMPACTS OF A NONINDIGENOUS MARINE PREDATOR IN A CALIFORNIA BAY. , 0, .		2

THE IMPACTS OF A NONINDIGENOUS MARINE PREDATOR IN A CALIFORNIA BAY. , 0, . 82