Stefano Bellucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7337054/publications.pdf

Version: 2024-02-01

565 papers 10,115 citations

43973 48 h-index 74 g-index

585 all docs

585 docs citations

585 times ranked 7572 citing authors

#	Article	IF	CITATIONS
1	Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicology Letters, 2006, 160, 121-126.	0.4	622
2	Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 333-351.	1.7	322
3	Isolation and Characterization of Fluorescent Nanoparticles from Pristine and Oxidized Electric Arc-Produced Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 831-836.	1.2	187
4	Low-energy photon-photon collisions to two-loop order. Nuclear Physics B, 1994, 423, 80-122.	0.9	136
5	CHARGE ORBITS OF SYMMETRIC SPECIAL GEOMETRIES AND ATTRACTORS. International Journal of Modern Physics A, 2006, 21, 5043-5097.	0.5	130
6	Two phases of the noncommutative quantum mechanics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 522, 345-349.	1.5	128
7	Carbon nanotubes: physics and applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 34-47.	0.8	122
8	Broadband Microwave Attenuator Based on Few Layer Graphene Flakes. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2491-2497.	2.9	113
9	Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chemical Communications, 2005, , 758.	2.2	104
10	Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicology Letters, 2009, 184, 192-197.	0.4	101
11	Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes. Chemical Physics Letters, 2004, 383, 188-191.	1.2	99
12	CNT composites for aerospace applications. Journal of Experimental Nanoscience, 2007, 2, 193-206.	1.3	95
13	Experimental Study for the Feasibility of a Crystalline Undulator. Physical Review Letters, 2003, 90, 034801.	2.9	91
14	Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicology Letters, 2008, 178, 95-102.	0.4	91
15	Comparative cyto-genotoxicity assessment of functionalized and pristine multiwalled carbon nanotubes on human lung epithelial cells. Toxicology in Vitro, 2012, 26, 831-840.	1.1	87
16	Nanoparticles for solid rocket propulsion. Journal of Physics Condensed Matter, 2006, 18, S1991-S2005.	0.7	84
17	Applications of Graphene at Microwave Frequencies. Radioengineering, 2015, 24, 661-669.	0.3	82
18	<i>In Vivo</i> Targeting of Intratumor Regulatory T Cells Using PEG-Modified Single-Walled Carbon Nanotubes. Bioconjugate Chemistry, 2013, 24, 852-858.	1.8	81

#	Article	IF	Citations
19	Microwave probing of nanocarbon based epoxy resin composite films: Toward electromagnetic shielding. Thin Solid Films, 2011, 519, 4114-4118.	0.8	80
20	Occurrence and characterization of surface sediment microplastics and litter from North African coasts of Mediterranean Sea: Preliminary research and first evidence. Science of the Total Environment, 2020, 713, 136664.	3.9	77
21	Multiâ€walled carbon nanotubes induce cytotoxicity and genotoxicity in human lung epithelial cells. Journal of Applied Toxicology, 2012, 32, 454-464.	1.4	75
22	Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. Journal of Applied Physics, 2013, 114, 164304.	1.1	71
23	A Planar Antenna With Voltage-Controlled Frequency Tuning Based on Few-Layer Graphene. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2380-2383.	2.4	69
24	Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1511-1522.	1.7	68
25	Enhanced Tunable Microstrip Attenuator Based on Few Layer Graphene Flakes. IEEE Microwave and Wireless Components Letters, 2017, 27, 332-334.	2.0	68
26	Chiral symmetry and pion polarizabilities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 277, 158-162.	1.5	63
27	AdS2/CFT1, canonical transformations and superconformal mechanics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 555, 99-106.	1.5	63
28	A computational approach to interface engineering of lead-free CH ₃ NH ₃ Snl ₃ highly-efficient perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 25683-25692.	1.3	62
29	AdS/CFT equivalence transformation. Physical Review D, 2002, 66, .	1.6	61
30	ABC of supermultiplets. Nuclear Physics B, 2004, 699, 226-252.	0.9	61
31	Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites. Journal of Nanophotonics, 2012, 6, 061715.	0.4	60
32	Structural determination of titanium-oxide nanoparticles by x-ray absorption spectroscopy. Applied Physics Letters, 2002, 80, 2973-2975.	1.5	58
33	Fermionic Casimir effect for parallel plates in the presence of compact dimensions with applications to nanotubes. Physical Review D, 2009, 80, .	1.6	58
34	Gravitational interaction to one loop in effective quantum gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 395, 16-23.	1.5	57
35	On some properties of the attractor equations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 635, 172-179.	1.5	57
36	Graphene Oxide (GO) Materialsâ€"Applications and Toxicity on Living Organisms and Environment. Journal of Functional Biomaterials, 2022, 13, 77.	1.8	57

#	Article	IF	Citations
37	Channeling of high energy beams in nanotubes. Nuclear Instruments & Methods in Physics Research B, 2003, 202, 236-241.	0.6	56
38	Nanotube diameter optimal for channeling of high-energy particle beam. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 542, 111-115.	1.5	55
39	Nanocomposites of epoxy resin with graphene nanoplates and exfoliated graphite: Synthesis and electrical properties. Physica Status Solidi (B): Basic Research, 2014, 251, 2599-2602.	0.7	54
40	(Super) oscillator on CPN and a constant magnetic field. Physical Review D, 2003, 67, .	1.6	53
41	Fermionic Casimir densities in toroidally compactified spacetimes with applications to nanotubes. Physical Review D, 2009, 79, .	1.6	53
42	stu Black Holes Unveiled. Entropy, 2008, 10, 507-555.	1.1	52
43	Surfactant-assisted synthesis of Cd1â^'xCoxS nanocluster alloys and their structural, optical and magnetic properties. Journal of Alloys and Compounds, 2010, 493, 240-245.	2.8	52
44	Induced fermionic current in toroidally compactified spacetimes with applications to cylindrical and toroidal nanotubes. Physical Review D, 2010, 82, .	1.6	51
45	Electromagnetic properties of graphene nanoplatelets/epoxy composites. Composites Science and Technology, 2016, 128, 75-83.	3.8	51
46	Exactly solvable Ising-Heisenberg chain with triangularXXZ-Heisenberg plaquettes. Physical Review B, 2009, 79, .	1.1	50
47	SL(2) spin chain and spinning strings on. Nuclear Physics B, 2005, 707, 303-320.	0.9	49
48	Bottom-up realization and electrical characterization of a graphene-based device. Nanotechnology, 2016, 27, 095204.	1.3	49
49	Phases in noncommutative quantum mechanics on (pseudo)sphere. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 542, 295-300.	1.5	47
50	Characterization of aluminium nitride nanostructures by XANES and FTIR spectroscopies with synchrotron radiation. Journal of Physics Condensed Matter, 2006, 18, S2095-S2104.	0.7	47
51	Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method. AIP Advances, 2017, 7, .	0.6	46
52	Nanotubes for particle channeling, radiation and electron sources. Nuclear Instruments & Methods in Physics Research B, 2005, 234, 57-77.	0.6	45
53	N=2 and N=4 supersymmetric Born–Infeld theories from nonlinear realizations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 502, 279-290.	1.5	41
54	Note onN=4supersymmetric mechanics on KA H ler manifolds. Physical Review D, 2001, 64, .	1.6	40

#	Article	IF	Citations
55	"Root―action forN=4supersymmetric mechanics theories. Physical Review D, 2006, 73, .	1.6	40
56	Attractors with vanishing central charge. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 655, 185-195.	1.5	39
57	Consistent chiral bosonization with abelian and non-abelian gauge symmetries. Nuclear Physics B, 1989, 326, 307-332.	0.9	38
58	Partial breaking of N=1, D=10 supersymmetry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 460, 348-358.	1.5	38
59	Superworldvolume dynamics of superbranes from nonlinear realizations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 482, 233-240.	1.5	38
60	Towards the complete N=2 superfield Born-Infeld action with partially broken N=4 supersymmetry. Physical Review D, 2001, 64, .	1.6	38
61	Noncommutative quantum scattering in a central field. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 609, 418-423.	1.5	38
62	N=8 superconformal mechanics. Nuclear Physics B, 2004, 684, 321-350.	0.9	37
63	Structural and electronic properties of single-walled AlN nanotubes of different chiralities and sizes. Journal of Physics Condensed Matter, 2006, 18, S2045-S2054.	0.7	37
64	Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave. Journal of Applied Physics, 2013, 113 , .	1.1	37
65	Effect of different carbon nanotubes on cell viability and proliferation. Journal of Physics Condensed Matter, 2007, 19, 395013.	0.7	36
66	Differences in Cytotoxic, Genotoxic, and Inflammatory Response of Bronchial and Alveolar Human Lung Epithelial Cells to Pristine and COOH-Functionalized Multiwalled Carbon Nanotubes. BioMed Research International, 2014, 2014, 1-14.	0.9	36
67	The liquid exfoliation of graphene in polar solvents. Applied Surface Science, 2021, 546, 149046.	3.1	36
68	Nanomaterials: Synthesis and Applications in Theranostics. Nanomaterials, 2021, 11, 3228.	1.9	36
69	The protein scaffold of the lipocalin odorant-binding protein is suitable for the design of new biosensors for the detection of explosive components. Journal of Physics Condensed Matter, 2007, 19, 395012.	0.7	34
70	Luminescence, vibrational and XANES studies of AlN nanomaterials. Radiation Measurements, 2007, 42, 708-711.	0.7	34
71	Crossover from the ballistic to the resonant tunneling transport for an ideal one-dimensional quantum ring with spin-orbit interaction. Physical Review B, 2008, 78, .	1.1	34
72	Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment. International Journal of Immunopathology and Pharmacology, 2006, 19, 3-10.	1.0	34

#	Article	IF	Citations
73	N = 2 super Boussinesq hierarchy: Lax pairs and conservation laws. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 312, 463-470.	1.5	33
74	New insight into the Witten-Dijkgraff-Verlinde-Verlinde equation. Physical Review D, 2005, 71, .	1.6	33
75	Tunable Phase Shifter Based on Few-Layer Graphene Flakes. IEEE Microwave and Wireless Components Letters, 2019, 29, 47-49.	2.0	33
76	supersymmetric 3-particles Calogero model. Nuclear Physics B, 2008, 805, 24-39.	0.9	32
77	Multiwalled carbon nanotube buckypaper: toxicology and biological effects <i>in vitro</i> and <i>in vivo</i> . Nanomedicine, 2009, 4, 531-540.	1.7	32
78	Dielectric properties of graphiteâ€based epoxy composites. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1623-1633.	0.8	32
79	Preparation of Few-Layer Graphene Dispersions from Hydrothermally Expanded Graphite. Applied Sciences (Switzerland), 2019, 9, 2539.	1.3	31
80	D=10, N=1 superspace supergravity and the Lorentz Chern-Simons form. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 208, 456-462.	1.5	30
81	On the Coulomb interaction in chiral-invariant one-dimensional electron systems. European Physical Journal B, 2000, 18, 3-8.	0.6	30
82	Superbranes and super Born-Infeld theories from nonlinear realizations. Nuclear Physics, Section B, Proceedings Supplements, 2001, 102-103, 26-41.	0.5	30
83	Quantum Hall effect in carbon nanotubes and curved graphene strips. Physical Review B, 2007, 76, .	1.1	30
84	Fermionic condensate in a conical space with a circular boundary and magnetic flux. Physical Review D, 2011, 83, .	1.6	30
85	Rashba effect in two-dimensional mesoscopic systems with transverse magnetic field. Physical Review B, 2003, 68, .	1.1	29
86	Spin bit models from non-planar SYM. Nuclear Physics B, 2004, 699, 151-173.	0.9	29
87	Influence of F centres on structural and electronic properties of AlN single-walled nanotubes. Journal of Physics Condensed Matter, 2007, 19, 395021.	0.7	29
88	IMPROVED SUPERGEOMETRIES FOR TYPE-II GREEN-SCHWARZ NONLINEAR $\dagger f$ -MODELS. Modern Physics Letters A, 1989, 04, 1985-1998.	0.5	28
89	Filtering of spin currents based on a ballistic ring. Journal of Physics Condensed Matter, 2007, 19, 395020.	0.7	28
90	d=4black hole attractors inN=2supergravity with Fayet-Iliopoulos terms. Physical Review D, 2008, 77, .	1.6	28

#	Article	IF	CITATIONS
91	Position and frequency shifts induced by massive modes of the gravitational wave background in alternative gravity. Physical Review D, 2009, 79, .	1.6	28
92	Electrical transport in carbon black-epoxy resin composites at different temperatures. Journal of Applied Physics, 2013, 114, .	1.1	28
93	Broadband dielectric/electric properties of epoxy thin films filled with multiwalled carbon nanotubes. Journal of Nanophotonics, 2013, 7, 073593.	0.4	28
94	Spin filtering and spin Hall accumulation in an interferometric ballistic nanojunction with Rashba spin-orbit interaction. Physical Review B, 2008, 77, .	1.1	27
95	Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches. Journal of Physics and Chemistry of Solids, 2009, 70, 796-803.	1.9	27
96	The Electrical Properties of Epoxy Resin Composites Filled with Cnts and Carbon Black. Journal of Nanoscience and Nanotechnology, 2011, 11, 9110-9117.	0.9	27
97	Fermionic vacuum polarization in compactified cosmic string spacetime. European Physical Journal C, 2014, 74, 1.	1.4	27
98	Leading logarithmic corrections to the weak leptonic and semi-leptonic low-energy hamiltonian. Nuclear Physics B, 1981, 189, 329-346.	0.9	26
99	KÃĦler geometry and SUSY mechanics. Nuclear Physics, Section B, Proceedings Supplements, 2001, 102-103, 227-232.	0.5	26
100	Four-dimensional Hall mechanics as a particle on CP3. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 574, 121-128.	1.5	26
101	Quantum oscillator onCPnin a constant magnetic field. Physical Review D, 2004, 70, .	1.6	26
102	Crystal undulator as a new compact source of radiation. Physical Review Special Topics: Accelerators and Beams, 2004, 7, .	1.8	26
103	First results of investigation of radiation from positrons in a crystalline undulator. JETP Letters, 2005, 82, 562-564.	0.4	26
104	Preliminary results on the study of radiation from positrons in a periodically deformed crystal. Nuclear Instruments & Methods in Physics Research B, 2006, 252, 32-35.	0.6	26
105	Magnetization non-rational quasi-plateau and spatially modulated spin order in the model of the single-chain magnet, [{(CuL) 2 Dy}{Mo(CN) 8 }]·2CH 3 CN·H 2 O. Europhysics Letters, 2014, 105, 47012.	0.7	26
106	Biosynthesis Microwave-Assisted of Zinc Oxide Nanoparticles with Ziziphus jujuba Leaves Extract: Characterization and Photocatalytic Application. Nanomaterials, 2021, 11, 1682.	1.9	26
107	Consistent and universal inclusion of the Lorentz Chern-Simons form in $D=10$, $N=1$ supergravity theories. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 238, 315-322.	1.5	25
108	Energy conditions and classical scalar fields. Nuclear Physics B, 2002, 640, 453-468.	0.9	25

#	Article	IF	CITATIONS
109	New many-body superconformal models as reductions of simple composite systems. Physical Review D, 2003, 68, .	1.6	25
110	Synthesis and Characterization of Supramolecular Nanostructures of Carbon Nanotubes and Ruthenium-Complex Luminophores. Journal of Nanoscience and Nanotechnology, 2006, 6, 1381-1386.	0.9	25
111	Attractors in black. Fortschritte Der Physik, 2008, 56, 761-785.	1.5	25
112	On the Microscopic Perspective of Black Branes Thermodynamic Geometry. Entropy, 2010, 12, 2097-2143.	1.1	25
113	Fermionic current from topology and boundaries with applications to higher-dimensional models and nanophysics. Physical Review D, 2013, 87, .	1.6	25
114	Influence of the ordering of impurities on the appearance of an energy gap and on the electrical conductance of graphene. Scientific Reports, 2018, 8, 9123.	1.6	25
115	mechanics in harmonic superspace. Nuclear Physics B, 2005, 722, 297-327.	0.9	24
116	The cluster architecture of carbon in polymer nanocomposites observed by impulse acoustic microscopy. Physica Status Solidi (B): Basic Research, 2016, 253, 1952-1959.	0.7	24
117	Calibration of the fine-structure constant of graphene by time-dependent density-functional theory. Physical Review B, 2017, 96, .	1.1	24
118	Electrical Permittivity and Conductivity of a Graphene Nanoplatelet Contact in the Microwave Range. Materials, 2018, 11, 2519.	1.3	24
119	Transmittance and Reflectance Effects during Thermal Diffusivity Measurements of GNP Samples with the Flash Method. Materials, 2019, 12, 696.	1.3	24
120	Green synthesis of zinc oxide nanoparticles by Ziziphus jujuba leaves extract: Environmental application, kinetic and thermodynamic studies. Journal of Physics and Chemistry of Solids, 2021, 158, 110237.	1.9	24
121	Partial BreakingN = 4 toN = 2: Hypermultiplet as a Goldstone Superfield. Fortschritte Der Physik, 2000, 48, 19-24.	1.5	23
122	Channeling of high-energy particles in a multi-wall nanotube. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 608, 53-58.	1.5	23
123	Cadmium clusters in Cdl ₂ layered crystals: the influence on the optical properties. Journal of Physics Condensed Matter, 2007, 19, 395015.	0.7	23
124	Wightman function and vacuum densities in de Sitter spacetime with toroidally compactified dimensions. Physical Review D, 2008, 77, .	1.6	23
125	Generalized waveguide approach to tight-binding wires: Understanding large vortex currents in quantum rings. Physical Review B, 2009, 79, .	1.1	23
126	Atomic and electronic structure of single-walled BN nanotubes containing N vacancies as well as C and O substitutes of N atoms. European Physical Journal B, 2009, 67, 519-525.	0.6	23

#	Article	IF	CITATIONS
127	Lattice distortions in a sawtooth chain with Heisenberg and Ising bonds. European Physical Journal B, 2010, 75, 531-541.	0.6	23
128	Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene micro-disk. Journal Physics D: Applied Physics, 2015, 48, 465104.	1.3	23
129	Crossover from marginal Fermi liquid to Luttinger liquid behavior in carbon nanotubes. Physical Review B, 2001, 64, .	1.1	22
130	Quantum mechanics model on a KÃĦler conifold. Physical Review D, 2004, 70, .	1.6	22
131	Crossover from the Luttinger-Liquid to Coulomb-Blockade Regime in Carbon Nanotubes. Physical Review Letters, 2005, 95, 186403.	2.9	22
132	Integer spin Hall effect in ballistic quantum wires. Physical Review B, 2006, 73, .	1.1	22
133	Carbon nanotubes on Jurkat cells: effects on cell viability and plasma membrane potential. Journal of Physics Condensed Matter, 2008, 20, 474204.	0.7	22
134	Terahertz time domain spectroscopy of epoxy resin composite with various carbon inclusions. Chemical Physics, 2012, 404, 129-135.	0.9	22
135	Finite temperature fermionic condensate and currents in topologically nontrivial spaces. Physical Review D, 2014, 89, .	1.6	22
136	Electron Transport in Carbon Nanotubes with Adsorbed Chromium Impurities. Materials, 2019, 12, 524.	1.3	22
137	Graphene-laden hydrogels: A strategy for thermally triggered drug delivery. Materials Science and Engineering C, 2021, 118, 111353.	3.8	22
138	Crystal undulator experiment at IHEP. Nuclear Instruments & Methods in Physics Research B, 2005, 234, 122-127.	0.6	21
139	Using a deformed crystal for bending a sub-GeV positron beam. Nuclear Instruments & Methods in Physics Research B, 2006, 252, 3-6.	0.6	21
140	Micro-Raman study of the role of sterilization on carbon nanotubes for biomedical applications. Nanomedicine, 2010, 5, 209-215.	1.7	21
141	Scalar and fermionic vacuum currents in de Sitter spacetime with compact dimensions. Physical Review D, 2013, 88, .	1.6	21
142	Graphene-based electronically tunable microstrip attenuator., 2014,,.		21
143	The quantization of chiral bosons coupled to gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 217, 289-295.	1.5	20
144	ÏÏ^ → Ï€OÏ€O and η → Ï€OÏÏ^ at low energy within the extended Nambu Jona-Lasinio model. Nuclear Physics B, 19 452, 626-645.	95 0.9	20

#	Article	IF	Citations
145	Single-wall nanotubes: $\hat{a} \in f$ Atomiclike behavior and microscopic approach. Physical Review B, 2005, 71, .	1.1	20
146	Supersymmetric Mechanics in Superspace. , 2006, , 49-96.		20
147	Carbon nanotubes toxicology and effects on metabolism and immunological modification <i>in vitro</i> and <i>in vivo</i> . Journal of Physics Condensed Matter, 2008, 20, 474203.	0.7	20
148	Correlation functions in one-dimensional spin lattices with Ising and Heisenberg bonds. European Physical Journal B, 2013, 86, 1.	0.6	20
149	Targeted Nanodrugs for Cancer Therapy: Prospects and Challenges. Journal of Nanoscience and Nanotechnology, 2014, 14, 98-114.	0.9	20
150	Making microbeams and nanobeams by channeling in microstructures and nanostructures. Physical Review Special Topics: Accelerators and Beams, 2003, 6, .	1.8	19
151	Ultra-fast efficient synthesis of one-dimensional nanostructures. Physica Status Solidi (B): Basic Research, 2011, 248, 2704-2707.	0.7	19
152	Graphene-Based Electronically Tuneable Microstrip Attenuator. Nanomaterials and Nanotechnology, 2014, 4, 18.	1.2	19
153	Vacuum currents in braneworlds on AdS bulk with compact dimensions. Journal of High Energy Physics, 2015, 2015, 1.	1.6	19
154	Efficient and versatile graphene-based multilayers for EM field absorption. Applied Physics Letters, $2016, 109, .$	1.5	19
155	Hadamard function and the vacuum currents in braneworlds with compact dimensions: Two-brane geometry. Physical Review D, 2016, 93, .	1.6	19
156	Extremal Black Hole and Flux Vacua Attractors. Lecture Notes in Physics, 2008, , 1-77.	0.3	19
157	, supergravity in harmonic superspace. Nuclear Physics B, 2000, 587, 445-480.	0.9	18
158	A study of random resistor-capacitor-diode networks to assess the electromagnetic properties of carbon nanotube filled polymers. Applied Physics Letters, 2013, 103, 243104.	1.5	18
159	Absence of actual plateaus in zero-temperature magnetization curves of quantum spin clusters and chains. Physical Review B, 2015, 92, .	1.1	18
160	Microstructure, elastic and electromagnetic properties of epoxy-graphite composites. AIP Advances, 2015, 5, .	0.6	18
161	Spin-orbit coupling in a quantum dot at high magnetic field. Physical Review B, 2005, 72, .	1.1	17
162	Magnetic field effects in carbon nanotubes. Journal of Physics Condensed Matter, 2007, 19, 395017.	0.7	17

#	Article	IF	CITATIONS
163	An exact fluctuating 1/2-BPS configuration. Journal of High Energy Physics, 2010, 2010, 1.	1.6	17
164	Landau levels and edge states in a cylindrical two-dimensional electron gas: A semiclassical approach. Physical Review B, 2010, 82, .	1.1	17
165	ACTION-ANGLE VARIABLES FOR THE PARTICLE NEAR EXTREME KERR THROAT. Modern Physics Letters A, 2012, 27, 1250191.	0.5	17
166	On the use of electrostatically doped graphene: Analysis of microwave attenuators. , 2014, , .		17
167	Multiwalled carbon nanotube buckypaper induces cell cycle arrest and apoptosis in human leukemia cell lines through modulation of AKT and MAPK signaling pathways. Toxicology in Vitro, 2015, 29, 1298-1308.	1.1	17
168	Thermodynamic curvature for a two-parameter spin model with frustration. Physical Review E, 2015, 91, 012116.	0.8	17
169	Voltage-Controlled and Input-Matched Tunable Microstrip Attenuators Based on Few-Layer Graphene. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 701-710.	2.9	17
170	(1, 0) Thirring models and the coupling of spin-O fields to the heterotic string. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 232, 67-74.	1.5	16
171	Optical, infrared and electron-microscopy studies of metallic clusters in layered crystals. Radiation Measurements, 2007, 42, 851-854.	0.7	16
172	Separation of attractors in 1-modulus quantum corrected special geometry. Journal of High Energy Physics, 2008, 2008, 088-088.	1.6	16
173	Potentials inN=4superconformal mechanics. Physical Review D, 2009, 80, .	1.6	16
174	Cationic Pollutant Removal from Aqueous Solution Using Reduced Graphene Oxide. Nanomaterials, 2022, 12, 309.	1.9	16
175	Supersymmetric chiral bosons. Nuclear Physics B, 1988, 304, 173-204.	0.9	15
176	On the forward angle dispersion sum rules for the pion polarizabilities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 314, 112-117.	1.5	15
177	Effects of the gravivector and graviscalar fields in N = 2, 8 supergravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 377, 55-59. Two-dimensional < mini.math altimg= sil.git overflow= scroil	1.5	15
178	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:xs="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:xs="http://www.w3.org/1998/Math/MathML" xmlns:ys="http://www.w3.org/1998/Math/MathML" xmlns:xs="http://www.w3.org/1998/Math/MathML" xmlns:xs="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	1.5	15
179	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:cr="http://www.elsevier.com/x Channeling technique to make nanoscale ion beams. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 70-75.	0.6	15
180	Magnetic field effects on low dimensional electron systems: Luttinger liquid behaviour in a quantum wire. European Physical Journal B, 2005, 45, 87-96.	0.6	15

#	Article	IF	Citations
181	Sigma model from spin chain. Nuclear Physics B, 2006, 741, 297-312.	0.9	15
182	Screening Electromagnetic Interference Effect using Nanocomposites. Macromolecular Symposia, 2008, 263, 21-29.	0.4	15
183	Quantum rings with tunnel barriers in a threading magnetic field: Spectra, persistent current and ballistic conductance. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1393-1402.	1.3	15
184	State-space correlations and stabilities. Physical Review D, 2010, 82, .	1.6	15
185	Thermodynamic Geometry and Topological Einstein–Yang–Mills Black Holes. Entropy, 2012, 14, 1045-1078.	1.1	15
186	Equivalent Electric Circuits for the Simulation of Carbon Nanotube-Epoxy Composites. IEEE Nanotechnology Magazine, 2013, 12, 696-703.	1.1	15
187	Novel non-destructive evaluation technique for the detection of poor dispersion of carbon nanotubes in nanocomposites. Composites Part B: Engineering, 2019, 163, 52-58.	5.9	15
188	Designing Cascades of Electron Transfer Processes in Multicomponent Graphene Conjugates. Angewandte Chemie - International Edition, 2020, 59, 23706-23715.	7.2	15
189	Reviewâ€"Perovskite/Spinel Based Graphene Derivatives Electrochemical and Biosensors. Journal of the Electrochemical Society, 2021, 168, 067506.	1.3	15
190	Oxidized Alginate Dopamine Conjugate: In Vitro Characterization for Nose-to-Brain Delivery Application. Materials, 2021, 14, 3495.	1.3	15
191	CNT Based Epoxy Resin Composites for Conductive Applications. Nanoscience and Nanotechnology Letters, 2011, 3, 889-894.	0.4	15
192	One-loop-order renormalization of the massless Wess-Zumino model in anti–de Sitter space. Physical Review D, 1986, 33, 619-622.	1.6	14
193	Two-photon physics capabilities of KLOE at DAΦNE. Il Nuovo Cimento A, 1994, 107, 837-861.	0.2	14
194	Linearizing W2,4 and WB2 algebras. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 347, 260-268.	1.5	14
195	Constant magnetic field and 2D noncommutative inverted oscillator. Physical Review D, 2003, 67, .	1.6	14
196	Hyperboloid, instanton, oscillator. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 137-141.	1.5	14
197	Microstructure of Ag ₂ Bl ₄ (B = Ag, Cd) superionics studied by SEM, impedance spectroscopy and fractal dimension analysis. Journal of Physics Condensed Matter, 2008, 20, 474211.	0.7	14
198	ON QUANTUM SPECIAL KÃ, HLER GEOMETRY. International Journal of Modern Physics A, 2010, 25, 1891-1935.	0.5	14

#	Article	IF	CITATIONS
199	Multi-walled Carbon Nanotubes/Unsaturated Polyester Composites: Mechanical and Thermal Properties Study. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 820-833.	1.0	14
200	Broadband Dielectric Spectroscopy of Composites Filled With Various Carbon Materials. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2024-2031.	2.9	14
201	Cluster microstructure and local elasticity of carbonâ€epoxy nanocomposites studied by impulse acoustic microscopy. Polymer Engineering and Science, 2017, 57, 697-702.	1.5	14
202	Goldstone superfield actions in AdS5 backgrounds. Nuclear Physics B, 2003, 672, 123-143.	0.9	13
203	Large N effects and renormalization of the long-range Coulomb interaction in carbon nanotubes. Nuclear Physics B, 2003, 663, 605-621.	0.9	13
204	On matrix models for anomalous dimensions of super-Yang–Mills theory. Nuclear Physics B, 2005, 726, 233-251.	0.9	13
205	Hamiltonian reduction and supersymmetric mechanics with Dirac monopole. Physical Review D, 2006, 74, .	1.6	13
206	Suppression of electron–electron repulsion and superconductivity in ultra-small carbon nanotubes. Journal of Physics Condensed Matter, 2006, 18, S2115-S2126.	0.7	13
207	Atomic Force Microscopy Characterization of Carbon Nanotubes. Journal of Physics: Conference Series, 2007, 61, 99-104.	0.3	13
208	The second Hopf map and Yang–Coulomb system on a 5D (pseudo)sphere. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 045205.	0.7	13
209	Casimir densities from coexisting vacua. Physical Review D, 2014, 89, .	1.6	13
210	Fermionic currents in AdS spacetime with compact dimensions. Physical Review D, 2017, 96, .	1.6	13
211	Plasmon oscillations in two-dimensional arrays of ultranarrow graphene nanoribbons. Physical Review B, 2019, 100, .	1.1	13
212	Epoxy Resin/SWCNT Shielding Paint for Super-High-Frequency Range. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 81-86.	0.1	13
213	$O(\hat{A}')$ Conformal Anomaly and String Theory Effective Action for \hat{A} -Models with Torsion. Progress of Theoretical Physics, 1988, 79, 1288-1292.	2.0	12
214	LORENTZ TRANSFORMATION IN THE GREEN-SCHWARZ STRING QUANTIZED BY GHOST TRUNCATION. Modern Physics Letters A, 1990, 05, 2253-2259.	0.5	12
215	Weyl invariance of the Green-Schwarz heterotic sigma model. Nuclear Physics B, 1991, 363, 573-592.	0.9	12
216	Equivalence principle, CPviolations, and the Higgs-like boson mass. Physical Review D, 1994, 49, 2922-2925.	1.6	12

#	Article	IF	CITATIONS
217	Studies of nanotube channeling for efficient beam scraping at accelerators. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 619-623.	0.6	12
218	Superstring sigma models from spin chains: the case. Nuclear Physics B, 2005, 729, 163-178.	0.9	12
219	Nonlinear chiral supermultiplet: Freedom in the fermion-boson coupling. Physical Review D, 2006, 73, .	1.6	12
220	Spin Hall effect and spin-orbit coupling in ballistic nanojunctions. Physical Review B, 2007, 75, .	1.1	12
221	Biomedical Platforms Based on Composite Nanomaterials and Cellular Toxicity. Journal of Physics: Conference Series, 2007, 61, 95-98.	0.3	12
222	Far IR spectra of Ag2CdI4 at temperature range 10–420ÂK: complementary experimental and first-principle theoretical study. European Physical Journal B, 2009, 70, 443-447.	0.6	12
223	N = 2 supersymmetric particle near extreme Kerr throat. Journal of High Energy Physics, 2011, 2011, 1.	1.6	12
224	Epoxy Resin/Carbon Black Composites Below the Percolation Threshold. Journal of Nanoscience and Nanotechnology, 2013, 13, 5434-5439.	0.9	12
225	Casimir effect for scalar current densities in topologically nontrivial spaces. European Physical Journal C, 2015, 75, 1.	1.4	12
226	Growth inhibition, cell-cycle alteration and apoptosis in stimulated human peripheral blood lymphocytes by multiwalled carbon nanotube buckypaper. Nanomedicine, 2015, 10, 351-360.	1.7	12
227	Bilayered graphene/h-BN with folded holes as new nanoelectronic materials: modeling of structures and electronic properties. Scientific Reports, 2016, 6, 38029.	1.6	12
228	Copper nanoparticles decorated graphene nanoplatelets and composites with PEDOT:PSS. Synthetic Metals, 2016, 222, 192-197.	2.1	12
229	Highly tunable and large bandwidth attenuator based on few-layer graphene. , 2017, , .		12
230	Fermionic currents in topologically nontrivial braneworlds. Physical Review D, 2018, 98, .	1.6	12
231	An inverse-designed electrochemical platform for analytical applications. Electrochemistry Communications, 2020, 121, 106862.	2.3	12
232	Fermionic vacuum currents in topologically nontrivial braneworlds: Two-brane geometry. Physical Review D, 2020, 101, .	1.6	12
233	Mechanical and Electrical Characterization of Polymer Nanocomposites with Carbon Nanotubes. Nanoscience and Nanotechnology Letters, 2011, 3, 826-834.	0.4	12
234	Sensitive Detection of Industrial Pollutants Using Modified Electrochemical Platforms. Nanomaterials, 2022, 12, 1779.	1.9	12

#	Article	IF	CITATIONS
235	Finiteness of gravitational corrections to magnetic moments and supergravity embedding. Nuclear Physics B, 1985, 252, 389-400.	0.9	11
236	Pauli-Villars regularization of the Wess-Zumino model in anti–de Sitter space. Physical Review D, 1986, 34, 1076-1088.	1.6	11
237	OSp(N,4)-invariant dimensional regularization. Physical Review D, 1987, 36, 1127-1134.	1.6	11
238	Ultraviolet finiteness versus conformal invariance in the Green-Schwarz Ïf-model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 227, 61-67.	1.5	11
239	Doping- and size-dependent suppression of tunneling in carbon nanotubes. Physical Review B, 2004, 69,	1.1	11
240	Nanostructures versus crystals in particle channeling. Nuclear Instruments & Methods in Physics Research B, 2005, 234, 99-105.	0.6	11
241	Hyper-KÃĦler geometry and dualization. Physical Review D, 2006, 73, .	1.6	11
242	Theoretical approach to electronic screening and correlated superconductivity in carbon nanotubes. Physical Review B, 2007, 75, .	1.1	11
243	display="inline"> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> supersymme McIntosh-Cisneros-Zwanziger-Kepler systems on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup>S<mml:mn>3</mml:mn></mml:msup></mml:math> .	tric 1.6	11
244	Physical Review D, 2007, 76, . Carbon nanotube-based biosensors. Journal of Physics Condensed Matter, 2008, 20, 474201.	0.7	11
245	Quantum lift of non-BPS flat directions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 672, 77-81.	1.5	11
246	Crystal-assisted beam extraction and collimation at the U-70 circular accelerator. Instruments and Experimental Techniques, $2011, 54, 1-7$.	0.1	11
247	Topics in cubic special geometry. Journal of Mathematical Physics, 2011, 52, .	0.5	11
248	ON THE THERMODYNAMIC GEOMETRY OF HOT QCD. International Journal of Modern Physics A, 2011, 26, 43-70.	0.5	11
249	BLACK STRINGS, BLACK RINGS AND STATE-SPACE MANIFOLD. International Journal of Modern Physics A, 2011, 26, 5403-5464.	0.5	11
250	A monitorable and renewable pollution filter based on graphene nanoplatelets. Nanotechnology, 2020, 31, 075701.	1.3	11
251	Electronic properties and quasi-zero-energy states of graphene quantum dots. Physical Review B, 2021, 103, .	1.1	11
252	Powerful Electron-Transfer Screen-Printed Platforms as Biosensing Tools: The Case of Uric Acid Biosensor. Biosensors, 2022, 12, 2.	2.3	11

#	Article	IF	Citations
253	Effect of Fe Doping on Photocatalytic Dye-Degradation and Antibacterial Activity of SnO ₂ Nanoparticles. Adsorption Science and Technology, 2022, 2022, .	1.5	11
254	One-loop-order renormalization of the massive Wess-Zumino model in anti–de Sitter space. Physical Review D, 1986, 33, 2319-2325.	1.6	10
255	Order α′3 effective action of superstring theory. Zeitschrift FÃ⅓r Physik C-Particles and Fields, 1987, 36, 229-233.	1.5	10
256	Fermion doubling and Berenstein–Maldacena–Nastase correspondence. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 564, 115-122.	1.5	10
257	On x-ray channelling in microcapillaries and nanocapillaries. Journal of Physics Condensed Matter, 2003, 15, 3171-3180.	0.7	10
258	Transport through a double barrier for interacting quasi one-dimensional electrons in a quantum wire in the presence of a transverse magnetic field. European Physical Journal B, 2005, 47, 385-390.	0.6	10
259	Superfield formulation of nonlinearN=4supermultiplets. Physical Review D, 2008, 77, .	1.6	10
260	Ballistic spin rotator based on a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î</mml:mi></mml:math> nanojunction with spin-orbit interaction. Physical Review B, 2008, 77, .	1.1	10
261	Photon emission and electron-positron photoproduction processes in the planar field of a bent single crystal. Physical Review A, 2012, 86, .	1.0	10
262	Supersymmetric component actions via coset approach. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 726, 497-504.	1.5	10
263	Electromagnetic two-point functions and the Casimir effect in Friedmann-Robertson-Walker cosmologies. Physical Review D, 2013, 88, .	1.6	10
264	Sharp variations in the electronic properties of graphene deposited on the h-BN layer. Physical Chemistry Chemical Physics, 2015, 17, 4354-4359.	1.3	10
265	Novel optimized biopolymer-based nanoparticles for nose-to-brain delivery in the treatment of depressive diseases. RSC Advances, 2020, 10, 28941-28949.	1.7	10
266	Through-Plane and In-Plane Thermal Diffusivity Determination of Graphene Nanoplatelets by Photothermal Beam Deflection Spectrometry. Materials, 2021, 14, 7273.	1.3	10
267	SUPERSYMMETRIC CHIRAL BOSONS ON GROUP MANIFOLDS. Modern Physics Letters A, 1988, 03, 1537-1549.	0.5	9
268	Goldstone superfield actions for partially broken AdS5 supersymmetry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 558, 182-190.	1.5	9
269	Spin bits at two loops. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 607, 180-187.	1.5	9
270	Geometry of theN=4,d=1nonlinear supermultiplet. Physical Review D, 2006, 74, .	1.6	9

#	Article	IF	Citations
271	Crystal bending of the LHC beam for in situ calibration of ATLAS and CMS calorimeters. Nuclear Instruments & Methods in Physics Research B, 2006, 252, 7-10.	0.6	9
272	Magnetic field effects and renormalization of the long-range Coulomb interaction in carbon nanotubes. Annals of Physics, 2006, 321, 934-949.	1.0	9
273	Radiation of relativistic particles for quasiperiodic motion in a transparent medium. Journal of Physics Condensed Matter, 2006, 18, S2083-S2093.	0.7	9
274	Quenching of the spin Hall effect in ballistic nanojunctions. Physical Review B, 2006, 74, .	1.1	9
275	Study of field emission of multiwalled C nanotubes synthesized by arc discharge. Journal of Physics Condensed Matter, 2007, 19, 395014.	0.7	9
276	Thermodynamic geometry and Hawking radiation. Journal of High Energy Physics, 2010, 2010, 1.	1.6	9
277	Atomic and electronic structure of both perfect and nanostructured Ni(111) surfaces: First-principles calculations. Thin Solid Films, $2011, 519, 3745-3751$.	0.8	9
278	The Coulomb problem on a 3-sphere and Heun polynomials. Journal of Mathematical Physics, 2013, 54, 082103.	0.5	9
279	Microwave applications of graphene for tunable devices. , 2014, , .		9
280	Supermembrane in D = 5: component action. Journal of High Energy Physics, 2014, 2014, 1.	1.6	9
281	Induced fermionic current in AdS spacetime in the presence of a cosmic string and a compactified dimension. European Physical Journal C, 2020, 80, 1.	1.4	9
282	Femtosecond Laser-Induced Periodic Surface Structures on 2D Ti-Fe Multilayer Condensates. Nanomaterials, 2021, 11, 316.	1.9	9
283	Laser Nanostructuring for Diffraction Grating Based Surface Plasmon-Resonance Sensors. Nanomaterials, 2021, 11, 591.	1.9	9
284	Bitmap and vectorial hologram recording by using femtosecond laser pulses. Scientific Reports, 2021, 11, 16406.	1.6	9
285	Calibration of Fermi Velocity to Explore the Plasmonic Character of Graphene Nanoribbon Arrays by a Semi-Analytical Model. Nanomaterials, 2022, 12, 2028.	1.9	9
286	Radiative generation of a mass term in anti–de Sitter supersymmetry. Physical Review D, 1987, 35, 1296-1304.	1.6	8
287	Conformal invariance of $led{l}f$ -models and classical string physics. Zeitschrift F $le{l}4$ r Physik C-Particles and Fields, 1989, 41, 631-636.	1.5	8
288	On the nonperturbative solution of the $d=1$ superstring. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 249, 49-55.	1.5	8

#	Article	IF	CITATIONS
289	Restoring Lorentz invariance in classical N=2 string. Nuclear Physics B, 2001, 606, 119-136.	0.9	8
290	Noncommutative Coulombic monopole. Physical Review D, 2005, 72, .	1.6	8
291	NewN=8nonlinear supermultiplet. Physical Review D, 2006, 74, .	1.6	8
292	Calculations of intensity of radiation in crystal undulator. Nuclear Instruments & Methods in Physics Research B, 2006, 252, 339-346.	0.6	8
293	Three dimensional <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:math> supersymmetry mechanics with Wu-Yang monopole. Physical Review D, 2010, 81, .	ri t. 6	8
294	State-space manifold and rotating black holes. Journal of High Energy Physics, 2011, 2011, 1.	1.6	8
295	Comparative Field Emission from Vertically Aligned Few-Layer Graphene and Carbon Nanotubes. Nanoscience and Nanotechnology Letters, 2011, 3, 907-912.	0.4	8
296	THERMODYNAMIC GEOMETRIC STABILITY OF QUARKONIA STATES. International Journal of Modern Physics A, 2011, 26, 2665-2724.	0.5	8
297	Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2580-2585.	0.8	8
298	What does See the Impulse Acoustic Microscopy inside Nanocomposites?. Physics Procedia, 2015, 70, 703-706.	1.2	8
299	Induced fermionic charge and current densities in two-dimensional rings. Physical Review D, 2016, 94, .	1.6	8
300	Integral equation technique for scatterers with mesoscopic insertions: Application to a carbon nanotube. Physical Review B, 2017, 96, .	1.1	8
301	Modeling and Electrochemical Characterization of Electrodes Based on Epoxy Composite with Functionalized Nanocarbon Fillers at High Concentration. Nanomaterials, 2020, 10, 850.	1.9	8
302	The Casimir effect for fermionic currents in conical rings with applications to graphene ribbons. European Physical Journal C, 2020, 80, 1.	1.4	8
303	Is anti-de Sitter supersymmetry radiatively broken?. Nuclear Physics B, 1988, 302, 423-447.	0.9	7
304	Scalar gravitational waves and Einstein frame. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 282, 357-361.	0.9	7
305	Neutron characterization of aluminium nitride nanotubes. Journal of Neutron Research, 2006, 14, 287-291.	0.4	7
306	Simulations of volume reflection and capture in bent crystals. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 235-241.	0.6	7

#	Article	IF	CITATIONS
307	Nanobeads-based assays. The case of gluten detection. Journal of Physics Condensed Matter, 2008, 20, 474202.	0.7	7
308	Spin filtering effects in a one dimensional artificial lattice with ring geometry subject to Rashba coupling. European Physical Journal B, 2010, 73, 215-221.	0.6	7
309	Quantum Ring Models and Action-Angle Variables. Journal of Computational and Theoretical Nanoscience, 2011, 8, 769-775.	0.4	7
310	Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates. Open Physics, 2011, 9, 519-529.	0.8	7
311	Simulation of electromagnetic properties in carbon nanotubes and graphene-based nanostructures. Journal of Nanophotonics, 2012, 6, 061706-1.	0.4	7
312	Simulation of Fundamental Properties of CNT- and GNR-Metal Interconnects for Development of New Nanosensor Systems. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 237-262.	0.2	7
313	Highly porous conducting carbon foams for electromagnetic applications. , 2012, , .		7
314	Intrinsic geometric analysis of the network reliability and voltage stability. International Journal of Electrical Power and Energy Systems, 2013, 44, 872-879.	3.3	7
315	Pumping through a Luttinger liquid ring threaded by a time-varying magnetic field. Physical Review B, 2013, 87, .	1.1	7
316	Resonant and Sensing Performance of Volume Waveguide Structures Based on Polymer Nanomaterials. Nanomaterials, 2020, 10, 2114.	1.9	7
317	Comparison of the Optical Planar Waveguide Sensors' Characteristics Based on Guided-Mode Resonance. Symmetry, 2020, 12, 1315.	1.1	7
318	Effect of impurities ordering in the electronic spectrum and conductivity of graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126401.	0.9	7
319	Behavior of the Energy Spectrum and Electric Conduction of Doped Graphene. Materials, 2020, 13, 1718.	1.3	7
320	Electrical Impedance Spectroscopy for Real-Time Monitoring of the Life Cycle of Graphene Nanoplatelets Filters for Some Organic Industrial Pollutants. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	7
321	D=10 SUPERSPACE GEOMETRY AND HETEROTIC SUPERSTRING THEORY (I). Modern Physics Letters A, 1988, 03, 1775-1784.	0.5	6
322	Wormholes and charged particles. Nuclear Physics B, 1991, 364, 495-513.	0.9	6
323	Production of WR and WI bosons from superstring-inspired E6 models at hadron colliders. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 254, 478-484.	1.5	6
324	Quantum mechanics of a superparticle with $1/4$ supersymmetry breaking. Physical Review D, 2002, 65, .	1.6	6

#	Article	IF	CITATIONS
325	Renormalization of the energy–momentum tensor in non-commutative scalar field theory. Nuclear Physics B, 2003, 665, 402-424.	0.9	6
326	Semiclassically concentrated solutions for the one-dimensional Fokker–Planck equation with a nonlocal nonlinearity. Journal of Physics A, 2005, 38, L103-L114.	1.6	6
327	Black Holes and Supergravity. , 2006, , 1-14.		6
328	Transport through a double barrier in Large Radius Carbon Nanotubes with a transverse magnetic field. European Physical Journal B, 2006, 52, 469-476.	0.6	6
329	Modulation of Luttinger liquid exponents in multiwalled carbon nanotubes. Physical Review B, 2006, 74, .	1.1	6
330	Projected space–time and varying speed of light. Chaos, Solitons and Fractals, 2008, 37, 49-59.	2.5	6
331	Spin filtering through ballistic nanojunctions, the role of geometry and of spin orbit interaction. European Physical Journal B, 2008, 66, 509-515.	0.6	6
332	The role of the geometry in multiwall carbon nanotube interconnects. Journal of Applied Physics, 2010, 108, 073704.	1.1	6
333	Thermodynamic geometry: Evolution, correlation and phase transition. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 2074-2086.	1.2	6
334	Attractors and first order formalism in five dimensions revisited. Physical Review D, 2011, 83, .	1.6	6
335	Isospin particle systems on quaternionic projective spaces. Physical Review D, 2013, 87, .	1.6	6
336	Wightman function and the Casimir effect for a Robin sphere in a constant curvature space. European Physical Journal C, 2014, 74, 1.	1.4	6
337	Space-filling D3-brane within coset approach. Journal of High Energy Physics, 2015, 2015, 1.	1.6	6
338	Innovative tunable microstrip attenuators based on few-layer graphene flakes. , 2016, , .		6
339	Shielding properties of composite materials based on epoxy resin with graphene nanoplates in the microwave frequency range. Technical Physics Letters, 2016, 42, 1141-1144.	0.2	6
340	Finite temperature fermion condensate, charge and current densities in a ($\$\$2+1\$\$\ 2+1$)-dimensional conical space. European Physical Journal C, 2016, 76, 1.	1.4	6
341	Investigation of the graphene thermal motion by rainbow scattering. Carbon, 2019, 145, 161-174.	5.4	6
342	Vacuum fermionic currents in braneworld models on AdS bulk with a cosmic string. Journal of High Energy Physics, 2021, 2021, 1.	1.6	6

#	Article	IF	CITATIONS
343	Volume reflection and volume capture of ultrarelativistic particles in bent single crystals. Physical Review Special Topics: Accelerators and Beams, $2015,18,.$	1.8	6
344	<i>Ab Initio</i> Simulations on Electric Properties for Junctions Between Carbon Nanotubes and Metal Electrodes. Nanoscience and Nanotechnology Letters, 2011, 3, 816-825.	0.4	6
345	Fermionic vacuum polarization around a cosmic string in compactified AdS spacetime. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 010.	1.9	6
346	Multifunctional Core-Shell NiFe2O4 Shield with TiO2/rGO Nanostructures for Biomedical and Environmental Applications. Bioinorganic Chemistry and Applications, 2022, 2022, 1-21.	1.8	6
347	Stress-Tensor Anomaly and Boundary Conditions of Anti-De Sitter Supersymmetry. Progress of Theoretical Physics, 1987, 78, 1176-1185.	2.0	5
348	Spontaneous breaking of Anti-de Sitter supersymmetry. Zeitschrift Fýr Physik C-Particles and Fields, 1987, 33, 551-560.	1.5	5
349	On-shell equivalence of light-like integrability and canonical constraints for D = 10 , N = 1 supergravity. Nuclear Physics B, 1989 , 313 , $220-236$.	0.9	5
350	The role of chiral loops in η → πOπOγγ. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 405, 334-340.	1.5	5
351	A heterotic N=2 string with space–time supersymmetry. Nuclear Physics B, 2001, 609, 410-428.	0.9	5
352	Complete Lagrangian formulation forN=4topological string. Physical Review D, 2002, 65, .	1.6	5
353	Can string bits be supersymmetric?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 571, 92-96.	1.5	5
354	<title>Composite materials based on carbon nanotubes for aerospace applications</title> ., 2005, , .		5
355	POSITRON FACILITIES TESTS OF THE X-RAYS PRODUCED BY CRYSTALLINE UNDULATORS. Modern Physics Letters B, 2005, 19, 85-98.	1.0	5
356	Coherent bremsstrahlung in imperfect periodic atomic structures. Physical Review B, 2005, 71, .	1.1	5
357	Nonminimal string corrections and supergravity. Physical Review D, 2006, 73, .	1.6	5
358	Nanoscience and nanotechnology 2005. Journal of Physics Condensed Matter, 2006, 18, S1967-S1970.	0.7	5
359	Spin Hall effect and spin filtering in ballistic nanojunctions. Journal of Physics Condensed Matter, 2007, 19, 395019.	0.7	5
360	Two-center quantum MICZ–Kepler system and the Zeeman effect in the charge–dyon system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5765-5772.	0.9	5

#	Article	IF	Citations
361	N=4superconformal mechanics and black holes. Physical Review D, 2008, 78, .	1.6	5
362	Spintronic single-qubit gate based on a < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mi> \hat{l} -shaped lateral quantum dot with spin-orbit interaction. Physical Review B, 2009, 79, .	1.1	5
363	Carbon Nanotubes Toxicity. , 2009, , 47-67.		5
364	Mechanical and electrical characterization of epoxy nanocomposites for electromagnetic shielding devices in aerospace applications. , 2009, , .		5
365	Double-Wall Carbon Nanotubes of Different Morphology: Electronic Structure Simulations. Nanoscience and Nanotechnology Letters, 2012, 4, 1074-1081. On the road to <mml:math .<="" altimg="sil.git" overflow="scroll" td=""><td>0.4</td><td>5</td></mml:math>	0.4	5
366	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd"	1.5	5
367	rings: State Tittp://www.elsevier.com/xm/common/struct-blo/dtd rings: Ce="http://www.elsevier.com/xm/common/struct-blo/dtd rings: Ce="http://www.elsevier.com/xm/com/xm/com/xm/com/xm/com/xm/com/xm/com/xm/com/xm/com/	1.2	5
368	Partial breaking of global supersymmetry and super particle actions. Journal of High Energy Physics, 2014, 2014, 1.	1.6	5
369	Innovative full wave modeling of plasmon propagation in graphene by dielectric permittivity simulations based on density functional theory. , 2015, , .		5
370	Real time polymer nanocomposites-based physical nanosensors: theory and modeling. Nanotechnology, 2017, 28, 355502.	1.3	5
371	On the phase-space catastrophes in dynamics of the quantum particle in an optical lattice potential. Chaos, 2020, 30, 103107.	1.0	5
372	Optimization of Optical Instruments Under Fluctuations of System Parameters. International Journal of Ambient Computing and Intelligence, 2021, 12, 73-113.	0.8	5
373	SAM Lectures on Extremal Black Holes in d = 4 Extended Supergravity. Springer Proceedings in Physics, 2010, , 1-30.	0.1	5
374	Boron Enriched Unfired Phosphate Ceramics as Neutron Protector. Nanoscience and Nanotechnology Letters, 2012, 4, 1104-1109.	0.4	5
375	LIOUVILLE REALIZATIONS OF Wâ^ž-ALGEBRAS. Modern Physics Letters A, 1991, 06, 1269-1276.	0.5	4
376	Supersymmetry in Anti-de Sitter Space. , 1992, 40, 393-443.		4
377	Null fields realizations of W3 from W(sl(4), sl(3)) and W(sl(3 $ 1$), sl(3)) algebras. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 366, 104-112.	1.5	4
378	Can one restore Lorentz invariance in quantum N=2 string?. Nuclear Physics B, 2002, 630, 151-162.	0.9	4

#	Article	IF	Citations
379	Making the hyper-KÃĦler structure ofN=2quantum string manifest. Physical Review D, 2004, 70, .	1.6	4
380	<title>New radiation sources from channeling in micro- and nano-structures</title> ., 2005, 5852, 276.		4
381	Spin separation in a T ballistic nanojunction due to lateral-confinement-induced spin–orbit coupling. Journal of Physics Condensed Matter, 2007, 19, 395018.	0.7	4
382	Size dependent superconductivity in small-diameter carbon nanotubes. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1057-1058.	0.6	4
383	Generic supersymmetric hyper-KÃ Ħ ler sigma models in. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 645, 299-302.	1.5	4
384	Interacting electrons in one-dimensional quantum rings in a threading magnetic field: Spin phases and correlation. Physical Review B, 2009, 80, .	1.1	4
385	Black hole entropy, flat directions and higher derivatives. Journal of High Energy Physics, 2009, 2009, 024-024.	1.6	4
386	Single spin-qubit rotators based on nanojunctions: A semiclassical path integral approach. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1571-1578.	1.3	4
387	Spin phases in disk- and ring-shaped quantum dots in a threading magnetic field. Journal of Nanophotonics, 2010, 4, 043508.	0.4	4
388	Emission characteristics of carbon nanotubes at large electrode distances. Journal of Nanophotonics, 2010, 4, 043501.	0.4	4
389	Quantum wires as logic operators: XNOR and NOR gate response in a ballistic interferometer. Physical Review B, 2010, 81, .	1.1	4
390	Spin phases and currents in ring shaped one-dimensional quantum dot arrays. Journal of Applied Physics, 2010, 107, 073703.	1.1	4
391	display="inline"> <mml:mi>C</mml:mi> <mml:msup><mml:mi>P</mml:mi><mml:mi>n</mml:mi></mml:msup> Pnnq/mml:mi>U(<mml:mi>n</mml:mi> <td>1.6</td> <td>4</td>	1.6	4
392	N=4chiral supermultiplet interacting with a magnetic field. Physical Review D, 2012, 85, .	1.6	4
393	A GEOMETRIC APPROACH TO CORRELATIONS AND QUARK NUMBER SUSCEPTIBILITIES. Modern Physics Letters A, 2012, 27, 1250055.	0.5	4
394	Nanocarbon Modified Epoxy Resin and Microwaves. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 496-501.	1.0	4
395	Graphene as a tunable resistor. , 2014, , .		4
396	Synthesis and electrical characterization of Graphene Nanoplatelets. , 2015, , .		4

#	Article	IF	Citations
397	Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique. AIP Conference Proceedings, 2016, , .	0.3	4
398	Rainbow channeling of protons in very short carbon nanotubes with aligned Stone–Wales defects. Nuclear Instruments & Methods in Physics Research B, 2016, 367, 37-45.	0.6	4
399	Graphene-based tunable microstrip attenuators and patch antenna. , 2017, , .		4
400	Observational constraints on tachyonic chameleon dark energy model. Astrophysics and Space Science, 2018, 363, 1.	0.5	4
401	Radiation modification and radiation hardness of microwave properties for some polymer nanocomposites under Co-60 gamma irradiation. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 242-245.	0.6	4
402	Energy gap in graphene and silicene nanoribbons: A semiclassical approach. AIP Conference Proceedings, 2018, , .	0.3	4
403	Alignment of polymer based magnetic composites in magnetic field. Progress in Organic Coatings, 2019, 137, 105366.	1.9	4
404	Characteristics of the Surface Plasmon–Polariton Resonance in a Metal Grating, as a Sensitive Element of Refractive Index Change. Materials, 2020, 13, 1882.	1.3	4
405	Coset Approach to the Partial Breaking of Global Supersymmetry. Springer Proceedings in Physics, 2014, , 205-248.	0.1	4
406	Topological Effects in a Fermionic Condensate Induced by a Cosmic String and Compactification on the AdS Bulk. Symmetry, 2022, 14, 584.	1.1	4
407	Cosmic string and brane induced effects on the fermionic vacuum in AdS spacetime. Journal of High Energy Physics, 2022, 2022, 1.	1.6	4
408	Finite renormalizations of OSp(N, 4) supersymmetry. Zeitschrift FÃ $\frac{1}{4}$ r Physik C-Particles and Fields, 1987, 34, 249-254.	1.5	3
409	Boundary conditions and renormalization in anti–de Sitter supersymmetry. Physical Review D, 1988, 37, 2357-2360.	1.6	3
410	Duality transformation of the one dimensional supersymmetric string. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 257, 35-39.	1.5	3
411	Broken supersymmetry in the matrix model on a circle. Zeitschrift FÃ $\frac{1}{4}$ r Physik C-Particles and Fields, 1992, 54, 565-572.	1.5	3
412	N = 2 chiral bosons in superspace. Annals of Physics, 1992, 217, 194-221.	1.0	3
413	γγ→πOÏ€Ocontribution to the processe+eâ^'→e+eâ^'Ï€OÏ€O. Physical Review D, 1994, 49, 1207-1216.	1.6	3
414	The W($sl(N + 3),sl(3)$) algebras and their contractions to W3. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 392, 350-359.	1.5	3

#	Article	IF	Citations
415	Complex structure in the Gupta–Bleuler quantization method. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 423, 274-280.	1.5	3
416	Effective gravity andOSp(N,4)-invariant matter. Physical Review D, 1998, 57, 1057-1062.	1.6	3
417	Geometry of anN=4twisted string. Physical Review D, 2002, 65, .	1.6	3
418	Renormalization of the energy–momentum tensor in noncommutative complex scalar field theory. Nuclear Physics B, 2004, 693, 51-75.	0.9	3
419	Steering a multi-MeV positron beam with a curved crystal. JETP Letters, 2006, 83, 95-97.	0.4	3
420	ALN nanoparticles XANES analysis: Local atomic and electronic structure. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575, 85-87.	0.7	3
421	Bouncing transient currents and SQUID-like voltage in nanodevices at half filling. Physical Review B, 2009, 80, .	1.1	3
422	Quantum Hall Fabry–Pérot interferometer: Logic gate responses. Journal of Applied Physics, 2010, 108, 033710.	1.1	3
423	Transport Properties in Carbon Nanotubes. , 2011, , 45-109.		3
424	Simulations on the mechanism of CNT bundle growth upon smooth and nanostructured Ni as well as \hat{l}_{r} -Al2O3 catalysts. Open Physics, 2011, 9, 530-541.	0.8	3
425	Multiwalled carbon nanotubes-induced cytotoxic effects on human breast adenocarcinoma cell line. , 2012, , .		3
426	STATE-SPACE GEOMETRY, NONEXTREMAL BLACK HOLES AND KALUZA–KLEIN MONOPOLES. Modern Physics Letters A, 2012, 27, 1250095.	0.5	3
427	Electrical Properties and Electromagnetic Shielding Effectiveness of Carbon Based Epoxy Nanocomposites. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 115-123.	0.2	3
428	Deflection of a 100-MeV positron beam by repeated reflections in thin crystals. JETP Letters, 2014, 98, 649-651.	0.4	3
429	Resistivity and low-frequency noise characteristics of epoxy-carbon composites. Journal of Applied Physics, 2017, 121, .	1.1	3
430	CNT-Metal Interconnects: Electronic Structure Calculations and Resistivity Simulations. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 3-11.	0.1	3
431	Higher-order corrections to the muon backward-forward asymmetry in the process \$\$e^ + e^ - 0 mu ^ - \$\$. Il Nuovo Cimento A, 1984, 80, 279-310.	0.2	2
432	Semiclassical solutions of OSp(N,4) supersymmetry 0. Zeitschrift FÃ $\frac{1}{4}$ r Physik C-Particles and Fields, 1987, 35, 389-397.	1.5	2

#	Article	IF	CITATIONS
433	Superfield formulation of anti-de Sitter supersymmetry. Classical and Quantum Gravity, 1989, 6, 505-517.	1.5	2
434	Ten-Dimensional Supersymmetry, Nonlinear Maxwell Theories and the String Effective Action. Progress of Theoretical Physics, 1990, 84, 728-738.	2.0	2
435	Higher derivative modifications of D=10 superspace Yang-Mills theories. Zeitschrift F $ ilde{A}$ /4r Physik C-Particles and Fields, 1991, 50, 237-242.	1.5	2
436	The discretization of D=2 surfaces and supersymmetry invariance. Nuclear Physics, Section B, Proceedings Supplements, 1991, 20, 737-740.	0.5	2
437	Multi-field coset space realizations of w $1+$ infinity. Classical and Quantum Gravity, 1993, 10, 1711-1729.	1.5	2
438	Nonlinear realizations of the W(2)3 algebra. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 191, 216-222.	0.9	2
439	A modification of the 10D superparticle action inspired by the Gupta-Bleuler quantization scheme. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 432, 103-107.	1.5	2
440	Non-linear realizations of superconformal and W-algebras as embeddings of strings. Nuclear Physics B, 1998, 510, 477-501.	0.9	2
441	Carbon Nanotubes and Semiconducting Nanostructures: Current Views and Future Perspectives. , 2004, , .		2
442	The influence of dimensionality on superconductivity in carbon nanotubes. Journal of Physics Condensed Matter, 2007, 19, 395016.	0.7	2
443	Possibility of crystal extraction and collimation in the sub-GeV range. Physical Review Special Topics: Accelerators and Beams, 2007, 10, .	1.8	2
444	N=8supersymmetric mechanics on the sphereS3. Physical Review D, 2007, 76, .	1.6	2
445	Nanoscale science and technology. Journal of Physics Condensed Matter, 2008, 20, 470301.	0.7	2
446	Electronic transport properties in carbon nanotubes. , 2008, , .		2
447	Toxicological and biological in vitro and in vivo effects of carbon nanotubes buckypaper., 2009,,.		2
448	Strong Interactions, (De)coherence and Quarkonia. Journal of Physics: Conference Series, 2011, 335, 012062.	0.3	2
449	N=4, d=1 supersymmetric hyper-K \tilde{A} p ler sigma models with isospin variables. Journal of High Energy Physics, 2011, 2011, 1.	1.6	2
450	ON REAL INTRINSIC WALL CROSSINGS. International Journal of Modern Physics A, 2011, 26, 5171-5209.	0.5	2

#	Article	IF	CITATIONS
451	<i>SU</i> (2) reductions in \$mathcal N\$= 4 multidimensional supersymmetric mechanics. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 125402.	0.7	2
452	Dual multiplets in $\langle i \rangle N \langle i \rangle = 4$ superconformal mechanics. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 035401.	0.7	2
453	Symmetries of N= 4 supersymmetric \$mathbb {CP}^n\$ mechanics. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 275305.	0.7	2
454	Quantum rings in magnetic fields and spin current generation. Journal of Physics Condensed Matter, 2014, 26, 145301.	0.7	2
455	Component on-shell actions of supersymmetric 3-branes: I. 3-brane in D = 6 . Classical and Quantum Gravity, 2015, 32, 035025.	1.5	2
456	Component on-shell actions of supersymmetric 3-branes: II. 3-brane in D = 8. Classical and Quantum Gravity, 2015, 32, 115008 .	1.5	2
457	Electrothermal modeling and characterization of carbon interconnects with negative temperature coefficient of the resistance. , 2016, , .		2
458	CNT and Graphene Growth: Growing, Quality Control, Thermal Expansion and Chiral Dispersion. Lecture Notes in Nanoscale Science and Technology, 2018, , 207-251.	0.4	2
459	Fluctuation Theory in Chemical Kinetics. Condensed Matter, 2018, 3, 49.	0.8	2
460	Nonâ€Equilibrium Green's Functions. Physica Status Solidi (B): Basic Research, 2019, 256, 1900335.	0.7	2
461	X-ray Absorption and Magnetic Circular Dichroism in CVD Grown Carbon Nanotubes. Materials, 2019, 12, 1073.	1.3	2
462	Tight-binding model in the theory of disordered crystals. Modern Physics Letters B, 2020, 34, 2040065.	1.0	2
463	Coordinated self-interference of wave packets: a new route towards classicality for structurally stable systems. Scientific Reports, 2020, 10, 16949.	1.6	2
464	Phenomenon of Electromagnetic Field Resonance in Metal and Dielectric Gratings and Its Possible Practical Applications. Condensed Matter, 2020, 5, 49.	0.8	2
465	A New Insight on Physical Phenomenology: A Review. Symmetry, 2021, 13, 607.	1.1	2
466	Electrochemical scanning probe analysis used as a benchmark for carbon forms quality test. Journal of Physics Condensed Matter, 2021, 33, 115002.	0.7	2
467	Volume reflection and channeling of ultrarelativistic protons in germanium bent single crystals. Physical Review Accelerators and Beams, 2016, 19, .	0.6	2
468	Synthesis of Titanium Nitride Film by RF Sputtering. Nanoscience and Nanotechnology Letters, 2011, 3, 856-864.	0.4	2

#	Article	IF	CITATIONS
469	An Impedance-Based Life-Monitoring Technique for a Graphene Water Filter. Lecture Notes in Electrical Engineering, 2020, , 719-726.	0.3	2
470	Theory of Electron Correlation in Disordered Crystals. Materials, 2022, 15, 739.	1.3	2
471	Study of Graphene Epoxy/Nanoplatelets Thin Films Subjected to Aging in Corrosive Environments. Journal of Composites Science, 2022, 6, 39.	1.4	2
472	Leading virtual corrections to the charge asymmetry in $\hat{l}/4\hat{A}\pm N$ deep inelastic scattering. Il Nuovo Cimento A, 1986, 96, 228-234.	0.2	1
473	All-Order No-Renormalization of the Mass and Interaction Lagrangians for Anti-de Sitter Supersymmetry. Progress of Theoretical Physics, 1990, 83, 1224-1233.	2.0	1
474	Consistent Batalin-Fradkin quantization of infinitely reducible first class constraints. Physical Review D, 2000, 62, .	1.6	1
475	Electrical and Mechanical Properties of Composite Materials Based on Carbon Nanotubes for Aerospace Applications. , 2004, , .		1
476	Coherent bremsstrahlung and e±-pair production in periodic nanostructures. Nuclear Instruments & Methods in Physics Research B, 2005, 234, 87-98.	0.6	1
477	N=4supersymmetricd=3nonlinear electrodynamics. Physical Review D, 2006, 74, .	1.6	1
478	Theoretical simulations of regular and defective aluminium nitride nanotubes. Journal of Physics: Conference Series, 2007, 93, 012005.	0.3	1
479	Spin hall accumulation in ballistic nanojunctions. European Physical Journal B, 2007, 59, 35-40.	0.6	1
480	Inclusion of Yang–Mills fields in string corrected supergravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 666, 193-198.	1.5	1
481	Spin separation driven by quantum interference in ballistic rings. Journal of Physics Condensed Matter, 2008, 20, 474214.	0.7	1
482	Guest Editorial: Selected Papers from the INFN-LNF Conference on Nanoscience and Nanotechnology. Journal of Nanophotonics, 2009, 3, 031999.	0.4	1
483	Investigation of the extraction and collimation of a beam in a circular accelerator using new crystal equipment. JETP Letters, 2010, 92, 206-209.	0.4	1
484	Theoretical Simulations on Electric Properties of CNT-Me and GNR-Me Interconnects Using Effective Media Approach. Procedia Computer Science, 2011, 7, 343-345.	1.2	1
485	Selected Peer-Reviewed Articles from the INFN-LNF Conference on Nanoscience and Nanotechnology. Nanoscience and Nanotechnology Letters, 2011, 3, 815-815.	0.4	1
486	Cytotoxicity of Multiwalled Carbon Nanotube Buckypaper in Human Lymphocytes. Lecture Notes in Electrical Engineering, 2011, , 489-493.	0.3	1

#	Article	IF	CITATIONS
487	EXTERNAL FIELD INFLUENCE ON SEMIFLEXIBLE MACROMOLECULES: GEOMETRIC COUPLING. Modern Physics Letters B, 2011, 25, 1809-1819.	1.0	1
488	SCALAR MODULI, WALL CROSSING AND PHENOMENOLOGICAL PREDICTIONS. Modern Physics Letters A, 2012, 27, 1250155.	0.5	1
489	Preliminary studies on nanocomposite based on high quality Silicon Carbide nanofibers. , 2012, , .		1
490	Steering of sub- GeV charged particle beams by use of reflections in thin crystal targets. Journal of Instrumentation, 2012, 7, P03008-P03008.	0.5	1
491	CNT Arrays Grown upon Catalytic Nickel Particles as Applied in the Nanoelectronic Devices: Ab Initio Simulation of Growth Mechanism. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 101-114.	0.2	1
492	Selected Peer-Reviewed Articles from the INFN-LNF Conference on Nanoscience and Nanotechnology. Nanoscience and Nanotechnology Letters, 2013, 5, 1131-1131.	0.4	1
493	Magnetic moments, pumping and spin polarization in ballistic nanoscopic circuits. , 2013, , .		1
494	Microwave applications of graphene for tunable devices. , 2014, , .		1
495	Microwave response properties of epoxy resin composites filled with graphitic fillers. , 2014, , .		1
496	Magnetization transfer by a quantum ring device. European Physical Journal B, 2014, 87, 1.	0.6	1
497	Testing the FPS approach in $d=1$. Journal of High Energy Physics, 2015, 2015, 1.	1.6	1
498	Comparison of rigorous vs approximate methods for accurate calculation of 2D-materials band structures and applications to THz nanoelectronics. , 2015, , .		1
499	Electromagnetic characterization of graphene and graphene nanoribbons via ab-initio permittivity simulations. , 2015 , , .		1
500	Black Holes, Gravitational Waves and Space Time Singularities. Foundations of Physics, 2018, 48, 1131-1133.	0.6	1
501	Development of Biosensors Using Carbon Nanotubes and Few Layered Graphene. NATO Science for Peace and Security Series A: Chemistry and Biology, 2018, , 19-29.	0.5	1
502	Thermodynamic Geometry of Yang–Mills Vacua. Universe, 2019, 5, 90.	0.9	1
503	Multi-Frequency Signal for Saturation Detection of a Pollution Filter Based on Graphene Nanoplatelets., 2020,,.		1
504	Relation between Resonance Parameters of Surface Plasmon-Polariton Waves with Properties of the Dielectric-Metal Film-Dielectric Waveguide. Materials, 2020, 13, 2989.	1.3	1

#	Article	IF	CITATIONS
505	Designing Cascades of Electron Transfer Processes in Multicomponent Graphene Conjugates. Angewandte Chemie, 2020, 132, 23914-23923.	1.6	1
506	Impact of Ultrashort Laser Nanostructuring on Friction Properties of AISI 314 LVC. Symmetry, 2021, 13, 1049.	1.1	1
507	Nano-Modified Screen-Printed Electrodes for the Determination of Organic Pollutants. , 2021, , .		1
508	Cobalt Oxide on a Nanoporous TUD-1 Catalyst for Methylene Blue Dye Interaction DFT Studies and Degradation. Symmetry, 2021, 13, 1754.	1.1	1
509	Partial Breaking $N = 4$ to $N = 2$: Hypermultiplet as a Goldstone Superfield., 2000, 48, 19.		1
510	A Special Issue dedicated to the Conference on Nanoscience and Nanotechnology. Nanoscience and Nanotechnology Letters, 2012, 4, 1031-1032.	0.4	1
511	Detection of CBRN Agents Through Nanocomposite Based Photonic Crystal Sensors. NATO Science for Peace and Security Series A: Chemistry and Biology, 2020, , 43-52.	0.5	1
512	MacGyvered Multiproperty Materials Using Nanocarbon and Jam: A Spectroscopic, Electromagnetic, and Rheological Investigation. Journal of Functional Biomaterials, 2022, 13, 5.	1.8	1
513	Ultrasonic Synthesis of Al-SBA-15 Nanoporous Catalyst for t-Butylation of Ethylbenzene. Journal of Nanomaterials, 2022, 2022, 1-10.	1.5	1
514	Features of the Resonance in a Rectangular Dielectric Surace-Relief Gratings Illuminated with a Limited Cross Section Gaussian Beam. Nanomaterials, 2022, 12, 72.	1.9	1
515	The Asymmetry of the Cosmic Microwave Background Radiation as Signature of Local Lorentz Invariance Violation. Advances in High Energy Physics, 2022, 2022, 1-10.	0.5	1
516	Structural Study of Nano-Clay and Its Effectiveness in Radiation Protection against X-rays. Nanomaterials, 2022, 12, 2332.	1.9	1
517	Higher-order corrections to electroweak processes. Rivista Del Nuovo Cimento, 1988, 11, 1-59.	2.0	0
518	Towards an integrable N=3 super KdV equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 173, 143-147.	0.9	0
519	On the Conformal Side of the Penrose Limit. European Physical Journal D, 2004, 54, 1171-1178.	0.4	0
520	Attractor Mechanism in N = 2, d = 4 Maxwellâ€"Einstein Supergravity. , 2006, , 25-76.		0
521	Black Holes and Critical Points in Moduli Space. , 2006, , 77-140.		0
522	Macroscopic Description. Higher Derivative Terms and Black Hole Entropy., 2006,, 211-218.		0

#	Article	IF	Citations
523	Microscopic Description. The Calabi–Yau Black Holes. , 2006, , 203-209.		O
524	Testing the X-rays production from crystal undulators at positron facilities. Nuclear Physics, Section B, Proceedings Supplements, 2006, 150, 339-344.	0.5	0
525	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.5	0
526	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/. Correlated nanoscopic Josephson junctions. Journal of Physics Condensed Matter, 2006, 18, \$2069-\$2081.	0.7	0
527	Josephson currents in correlated nanoscopic models. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1313-1314.	0.6	0
528	Nanojunctions as logic operators for the spintronics. European Physical Journal B, 2010, 73, 563-570.	0.6	0
529	Carbon Nanotubes <i>ln Vitro</i> and <i>ln Vivo</i> Biological Effects. Advances in Science and Technology, 0, , .	0.2	0
530	Multiwall carbon-nanotube interconnects: radial effects on physical models and resistance calculations for various metal substrates. , 2010, , .		0
531	Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites. , 2010, , .		0
532	Epoxy & Samp; #x2014; Nano-carbon shielding coating for super-high-frequency range., 2011,,.		0
533	Differential Geometry in DNA Molecules. Nanoscience and Nanotechnology Letters, 2011, 3, 922-926.	0.4	0
534	Quantum nanojunctions as spintronic logic operators: Gate response in a two input ballistic interferometer. Journal of Applied Physics, $2011,109,.$	1.1	0
535	Development of Micro and Nano Electro—Mechanical Technologies for Space Transportation Systems. Nanoscience and Nanotechnology Letters, 2011, 3, 865-876.	0.4	0
536	STRING CORRECTIONS TO THE RIEMANN CURVATURE TENSOR AND THE THIRD-ORDER SOLUTION. Modern Physics Letters A, 2012, 27, 1250122.	0.5	0
537	Equivalent electric circuits for the comparison of nanocarbon-based epoxy resin systems., 2012,,.		0
538	Nanocarbon broadband analysis, temperature dependent dielectric properties and percolation thresholds. , $2013, \ldots$		0
539	Transport mechanisms and dielectric relaxation of epoxy nanocomposites in DC to microwave range. , 2013, , .		0
540	Carbon foams, nano-thin carbonaceous films and nanocarbon based polymer composites: Microwave applications. , $2013, \ldots$		0

#	Article	IF	Citations
541	Full-wave techniques for the electromagnetic-quantum transport modeling in nano-devices. , 2014, , .		O
542	State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory. Advances in High Energy Physics, 2014, 2014, 1-17.	0.5	0
543	Advanced techniques for the band structure-quantum transport modeling in graphene and 2D-materials beyond graphene. , 2014, , .		0
544	Design, fabrication and electrical characterization of a low-cost and solvent-free graphene electronic device. , $2015, , .$		0
545	Ferrara–Porrati–Sagnotti approach and the one-dimensional supersymmetric model with PBGS. Journal of Physics: Conference Series, 2016, 670, 012008.	0.3	0
546	Ab initio modelling of dielectric screening and plasmon resonances in extrinsic silicene. , 2016, , .		0
547	Bridging between integral equation technique of classical electrodynamics and landauer-buttiker formalism for quantum transport. , 2017, , .		0
548	Nanosensor Systems Simulations. Lecture Notes in Nanoscale Science and Technology, 2018, , 309-335.	0.4	0
549	General Approach to the Description of Fundamental Properties of Disordered Nanosized Media. Lecture Notes in Nanoscale Science and Technology, 2018, , 7-31.	0.4	0
550	Scattering Processes in Nanocarbon-Based Nanointerconnects. Lecture Notes in Nanoscale Science and Technology, 2018, , 77-113.	0.4	0
551	Classification and Operating Principles of Nanodevices. Lecture Notes in Nanoscale Science and Technology, 2018, , 147-206.	0.4	0
552	Application of acoustic microscopy technique for the bulk visualization and elasticity measurement of nanocomposites. IOP Conference Series: Materials Science and Engineering, 2018, 443, 012005.	0.3	0
553	Electrothermal Characterization of the Electrical Resistance of Graphene Contacts for Packages. , 2018, , .		0
554	Electrical properties of a graphene nanoplatelets composite as interposer for electronic packages. , 2018, , .		0
555	Graphene nano platelets tuneable conducting properties for innovative microwave components. , 2019, , .		0
556	Constraints on a scalar-tensor model with Gauss–Bonnet coupling from SN Ia and BAO observations. Astrophysics and Space Science, 2019, 364, 1.	0.5	0
557	Nanoscience and Nanotechnology, Proceedings of the INFN-LNF 2018 Conference. Condensed Matter, 2019, 4, 88.	0.8	0
558	Nanocarbon for drug delivery., 2020,, 205-232.		0

#	Article	IF	CITATIONS
559	Intrinsic Geometric Characterization. Springer Briefs in Electrical and Computer Engineering, 2013, , 19-28.	0.3	0
560	Phenomenology of Antigravity in N=2, 8 Supergravity., 1999,, 918-921.		0
561	Attractors and Entropy. , 0, , 15-24.		0
562	Black Hole Thermodynamics and Geometry., 0,, 141-174.		0
563	N > 2-extended Supergravity, U-duality and the Orbits of Exceptional Lie Groups. , 0, , 175-202.		0
564	Further Developments., 0,, 219-233.		0
565	Spectral and Angular Characteristics of the High-Contrast Dielectric Grating under the Resonant Interaction of a Plane Wave and a Gaussian Beam. Materials, 2022, 15, 3529.	1.3	0