
Peter K Stys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336948/publications.pdf Version: 2024-02-01

DETED K STVS

#	Article	IF	CITATIONS
1	Diagnosing Alzheimer's Disease from Circulating Blood Leukocytes Using a Fluorescent Amyloid Probe. Journal of Alzheimer's Disease, 2022, 85, 1721-1734.	1.2	3
2	Subcellular localization of hippocampal ryanodine receptor 2 and its role in neuronal excitability and memory. Communications Biology, 2022, 5, 183.	2.0	12
3	Autofluorescence spectroscopy as a proxy for chronic white matter pathology. Multiple Sclerosis Journal, 2021, 27, 1046-1056.	1.4	4
4	Early detection of prion protein aggregation with a fluorescent pentameric oligothiophene probe using spectral confocal microscopy. Journal of Neurochemistry, 2021, 156, 1033-1048.	2.1	9
5	Abnormalities in normal-appearing white matter from which multiple sclerosis lesions arise. Brain Communications, 2021, 3, fcab176.	1.5	13
6	Axonâ€Myelin Unit Blistering as Early Event in <scp>MS</scp> Normal Appearing White Matter. Annals of Neurology, 2021, 89, 711-725.	2.8	39
7	Nile Red fluorescence spectroscopy reports early physicochemical changes in myelin with high sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	36
8	Complex Photophysical Properties of K114 Make for a Versatile Fluorescent Probe for Amyloid Detection. ACS Chemical Neuroscience, 2021, 12, 1273-1280.	1.7	9
9	Mechanistic underpinning of an inside–out concept for autoimmunity in multiple sclerosis. Annals of Clinical and Translational Neurology, 2021, 8, 1709-1719.	1.7	20
10	Label-free assessment of myelin status using birefringence microscopy. Journal of Neuroscience Methods, 2021, 360, 109226.	1.3	7
11	Spectral photokinetic conversion of the fluorescent probes BSB and K114 for improved detection of amyloid assemblies. Journal of Biophotonics, 2021, 14, e202100203.	1.1	4
12	Quantitative detection of grey and white matter amyloid pathology using a combination of K114 and CRANAD-3 fluorescence. Neurobiology of Disease, 2021, 161, 105540.	2.1	8
13	Ferroptosis Mediates Cuprizone-Induced Loss of Oligodendrocytes and Demyelination. Journal of Neuroscience, 2020, 40, 9327-9341.	1.7	95
14	Traumatic Injury Reduces Amyloid Plaque Burden in the Transgenic 5xFAD Alzheimer's Mouse Spinal Cord. Journal of Alzheimer's Disease, 2020, 77, 1315-1330.	1.2	1
15	Plasma Neurofilament Light: A Marker of Neurodegeneration in Mild Behavioral Impairment. Journal of Alzheimer's Disease, 2020, 76, 1017-1027.	1.2	68
16	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Science Advances, 2020, 6, eaay6324.	4.7	130
17	Excitation parameters optimized for coherent anti-Stokes Raman scattering imaging of myelinated tissue. Journal of Biomedical Optics, 2019, 24, 1.	1.4	8
18	Recent advances in understanding multiple sclerosis. F1000Research, 2019, 8, 2100.	0.8	39

Peter K Stys

#	Article	IF	CITATIONS
19	Two steps forward for myelin repair in multiple sclerosis. Lancet Neurology, The, 2018, 17, 297-298.	4.9	2
20	We should focus more on finding therapeutic targets for the non-inflammatory damage in MS – Commentary. Multiple Sclerosis Journal, 2018, 24, 1276-1277.	1.4	1
21	Deficient Surveillance and Phagocytic Activity of Myeloid Cells Within Demyelinated Lesions in Aging Mice Visualized by <i>Ex Vivo</i> Live Multiphoton Imaging. Journal of Neuroscience, 2018, 38, 1973-1988.	1.7	40
22	A novel approach to 32-channel peripheral nervous system myelin imaging in vivo, with single axon resolution. Journal of Neurosurgery, 2018, 130, 163-171.	0.9	7
23	Biochemically altered myelin triggers autoimmune demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5528-5533.	3.3	83
24	The triple monoamine re-uptake inhibitor DOV 216,303 promotes functional recovery after spinal cord contusion injury in mice. Neuroscience Letters, 2018, 675, 1-6.	1.0	6
25	Mechanisms of lysophosphatidylcholineâ€induced demyelination: A primary lipid disrupting myelinopathy. Clia, 2018, 66, 327-347.	2.5	124
26	Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nature Reviews Neuroscience, 2018, 19, 49-58.	4.9	100
27	P1â€⊋75: AMIRASPEC: A BLOODâ€BASED DIAGNOSTIC FOR ALZHEIMER'S DISEASE USING SPECTRAL MICROSC Alzheimer's and Dementia, 2018, 14, P387.	ОР <u>ү</u> 4	0
28	Myelocortical multiple sclerosis: a new disease subtype?. Lancet Neurology, The, 2018, 17, 832-834.	4.9	1
29	Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. Journal of Cell Biology, 2017, 216, 1163-1181.	2.3	54
30	Effects of laser polarization on responses of the fluorescent Ca ²⁺ indicator X-Rhod-1 in neurons and myelin. Neurophotonics, 2017, 4, 025002.	1.7	7
31	Inhibitors of protein arginine deiminases and their efficacy in animal models of multiple sclerosis. Bioorganic and Medicinal Chemistry, 2017, 25, 2643-2656.	1.4	18
32	Multi-target-directed phenol–triazole ligands as therapeutic agents for Alzheimer's disease. Chemical Science, 2017, 8, 5636-5643.	3.7	79
33	Axonal and myelinic pathology in 5xFAD Alzheimer's mouse spinal cord. PLoS ONE, 2017, 12, e0188218.	1.1	42
34	Functional ionotropic glutamate receptors on peripheral axons and myelin. Muscle and Nerve, 2016, 54, 451-459.	1.0	18
35	P3â€178: Development of a Diagnostic Tool for Alzheimer's Disease: Detecting Toxic AB Species from Blood Using Spectral Microscopy. Alzheimer's and Dementia, 2016, 12, P888.	0.4	0
36	O1-05-05: Detection of Early Alzheimer's Disease From Blood Using Novel Microspectroscopy. , 2016, 12, P184-P185.		0

PETER K STYS

#	Article	IF	CITATIONS
37	Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurology, The, 2016, 15, 1089-1102.	4.9	112
38	lonotropic glutamate receptor expression in human white matter. Neuroscience Letters, 2016, 630, 1-8.	1.0	20
39	Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain, 2016, 139, 653-661.	3.7	199
40	The molecular physiology of the axo-myelinic synapse. Experimental Neurology, 2016, 276, 41-50.	2.0	106
41	Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromolecular Bioscience, 2015, 15, 1523-1534.	2.1	31
42	Axoâ€glial communication through neurexinâ€neuroligin signaling regulates myelination and oligodendrocyte differentiation. Glia, 2015, 63, 2023-2039.	2.5	27
43	Inefficient clearance of myelin debris by microglia impairs remyelinating processes. Journal of Experimental Medicine, 2015, 212, 481-495.	4.2	462
44	Patrolling monocytes play a critical role in CX3CR1-mediated neuroprotection during excitotoxicity. Brain Structure and Function, 2015, 220, 1759-1776.	1.2	29
45	Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity. Frontiers in Cell and Developmental Biology, 2014, 2, 45.	1.8	54
46	Skinâ€derived precursor schwann cell myelination capacity in focal tibial demyelination. Muscle and Nerve, 2014, 50, 262-272.	1.0	19
47	High-resolution fluorescence microscopy of myelin without exogenous probes. NeuroImage, 2014, 87, 42-54.	2.1	14
48	Remyelination after spinal cord injury: Is it a target for repair?. Progress in Neurobiology, 2014, 117, 54-72.	2.8	155
49	Editors' Preface: The Colourful White Matter. Glia, 2014, 62, 1747-1748.	2.5	1
50	White matter injury: Ischemic and nonischemic. Glia, 2014, 62, 1780-1789.	2.5	88
51	Treatment trials in progressive MS—current challenges and future directions. Nature Reviews Neurology, 2013, 9, 496-503.	4.9	40
52	Pathoetiology of multiple sclerosis: are we barking up the wrong tree?. F1000prime Reports, 2013, 5, 20.	5.9	37
53	Aβ neurotoxicity depends on interactions between copper ions, prion protein, and <i>N</i> -methyl- <scp>d</scp> -aspartate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1737-1742.	3.3	209
54	Copperâ€dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders. Journal of Physiology, 2012, 590, 1357-1368.	1.3	91

PETER K STYS

#	Article	IF	CITATIONS
55	Will the real multiple sclerosis please stand up?. Nature Reviews Neuroscience, 2012, 13, 507-514.	4.9	406
56	The axo-myelinic synapse. Trends in Neurosciences, 2011, 34, 393-400.	4.2	42
57	Excitatory Glycine Responses of CNS Myelin Mediated by NR1/NR3 "NMDA―Receptor Subunits. Journal of Neuroscience, 2010, 30, 11501-11505.	1.7	86
58	Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source. Optics Express, 2010, 18, 23796.	1.7	41
59	Effects of the Noradrenergic System in Rat White Matter Exposed to Oxygen–Glucose Deprivation <i>In Vitro</i> . Journal of Neuroscience, 2009, 29, 1796-1804.	1.7	17
60	Role of prions in neuroprotection and neurodegeneration. Prion, 2009, 3, 187-189.	0.9	15
61	Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurology, The, 2009, 8, 280-291.	4.9	524
62	Gray matter pathology in (chronic) MS: Modern views on an early observation. Journal of the Neurological Sciences, 2009, 282, 12-20.	0.3	105
63	Calpain Inhibitors Confer Biochemical, but Not Electrophysiological, Protection Against Anoxia in Rat Optic Nerves. Journal of Neurochemistry, 2008, 74, 2101-2107.	2.1	32
64	White matter NMDA receptors: an unexpected new therapeutic target?. Trends in Pharmacological Sciences, 2007, 28, 561-566.	4.0	75
65	Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths. Optics Express, 2007, 15, 14028.	1.7	54
66	Sodium channel blockers as neuroprotectants in neuroinflammatory disease: a doubleâ€edged sword. Annals of Neurology, 2007, 62, 3-5.	2.8	7
67	Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nature Medicine, 2007, 13, 874-879.	15.2	73
68	Acute Anterior Circulation Stroke: Recanalization Using Clot Angioplasty. Canadian Journal of Neurological Sciences, 2006, 33, 217-222.	0.3	25
69	Spatiotemporal Distribution of Spectrin Breakdown Products Induced by Anoxia in Adult Rat Optic Nervein Vitro. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 777-786.	2.4	7
70	Complex interplay between glutamate receptors and intracellular Ca2+stores during ischaemia in rat spinal cord white matter. Journal of Physiology, 2006, 577, 191-204.	1.3	46
71	Na+-Dependent Sources of Intra-Axonal Ca2+ Release in Rat Optic Nerve during In Vitro Chemical Ischemia. Journal of Neuroscience, 2005, 25, 9960-9967.	1.7	83
72	General mechanisms of axonal damage and its prevention. Journal of the Neurological Sciences, 2005, 233, 3-13.	0.3	277

PETER K STYS

#	Article	IF	CITATIONS
73	Nicotinic Acetylcholine Receptors in Mouse and Rat Optic Nerves. Journal of Neurophysiology, 2004, 91, 1025-1035.	0.9	26
74	White Matter Injury Mechanisms. Current Molecular Medicine, 2004, 4, 113-130.	0.6	238
75	Functional Innervation in Tissue Engineered Models for In Vitro Study and Testing Purposes. Toxicological Sciences, 2004, 82, 525-533.	1.4	43
76	Innervated human corneal equivalents as in vitro models for nerveâ€ŧarget cell interactions. FASEB Journal, 2004, 18, 170-172.	0.2	59
77	Traumatic Axonal Injury Induces Proteolytic Cleavage of the Voltage-Gated Sodium Channels Modulated by Tetrodotoxin and Protease Inhibitors. Journal of Neuroscience, 2004, 24, 4605-4613.	1.7	201
78	Depolarization-Induced Ca2+ Release in Ischemic Spinal Cord White Matter Involves L-type Ca2+ Channel Activation of Ryanodine Receptors. Neuron, 2003, 40, 53-63.	3.8	188
79	Aberrant Chloride Transport Contributes to Anoxic/Ischemic White Matter Injury. Journal of Neuroscience, 2003, 23, 3826-3836.	1.7	45
80	Calpain-dependent neurofilament breakdown in anoxic and ischemic rat central axons. Neuroscience Letters, 2002, 328, 150-154.	1.0	88
81	Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-Sensitive Sodium Channels. Journal of Neuroscience, 2001, 21, 1923-1930.	1.7	381
82	The use-dependent sodium channel blocker mexiletine is neuroprotective against global ischemic injury. Brain Research, 2001, 898, 281-287.	1.1	38
83	Calcium imaging in live rat optic nerve myelinated axons in vitro using confocal laser microscopy. Journal of Neuroscience Methods, 2000, 102, 165-176.	1.3	29
84	Mechanisms of Ionotropic Glutamate Receptor-Mediated Excitotoxicity in Isolated Spinal Cord White Matter. Journal of Neuroscience, 2000, 20, 1190-1198.	1.7	283
85	Important Role of Reverse Na ⁺ -Ca ²⁺ Exchange in Spinal Cord White Matter Injury at Physiological Temperature. Journal of Neurophysiology, 2000, 84, 1116-1119.	0.9	117
86	Glutamate-Induced White Matter Injury: Excitotoxicity without Synapses. Neuroscientist, 2000, 6, 230-233.	2.6	3
87	Novel Injury Mechanism in Anoxia and Trauma of Spinal Cord White Matter: Glutamate Release via Reverse Na ⁺ -dependent Glutamate Transport. Journal of Neuroscience, 1999, 19, RC16-RC16.	1.7	215
88	Anoxic and Ischemic Injury of Myelinated Axons in CNS White Matter: From Mechanistic Concepts to Therapeutics. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 2-25.	2.4	267
89	Effects of K+ channel blockers on the anoxic response of CNS myelinated axons. NeuroReport, 1998, 9, 447-453.	0.6	17
90	lon Transport and Membrane Potential in CNS Myelinated Axons II. Effects of Metabolic Inhibition. Journal of Neurophysiology, 1997, 78, 2095-2107.	0.9	47

Peter K Stys

#	Article	IF	CITATIONS
91	Ion Transport and Membrane Potential in CNS Myelinated Axons I. Normoxic Conditions. Journal of Neurophysiology, 1997, 78, 2086-2094.	0.9	21
92	Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons. Brain Research, 1997, 776, 1-9.	1.1	46
93	Intracellular Concentrations of Major Ions in Rat Myelinated Axons and Glia: Calculations Based on Electron Probe Xâ€Ray Microanalyses. Journal of Neurochemistry, 1997, 68, 1920-1928.	2.1	44
94	Na+-Ca2+ Exchange in Anoxic/Ischemic Injury of CNS Myelinated Axons. Annals of the New York Academy of Sciences, 1996, 779, 366-378.	1.8	15
95	Reoxygenation of anoxic peripheral nerve myelinated axons promotes re-establishment of normal elemental composition. Brain Research, 1996, 715, 189-196.	1.1	8
96	REVIEW â— : The Na-Ca Exchanger in Neurons and Glial Cells. Neuroscientist, 1996, 2, 162-171.	2.6	8
97	Mechanisms of Injuryâ€Induced Calcium Entry into Peripheral Nerve Myelinated Axons: Role of Reverse Sodiumâ€Calcium Exchange. Journal of Neurochemistry, 1996, 66, 493-500.	2.1	72
98	Protective Effects of Antiarrhythmic Agents against Anoxic Injury in CNS White Matter. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 425-432.	2.4	37
99	Mechanisms of injury-induced calcium entry into peripheral nerve myelinated axons: in vitro anoxia and ouabain exposure. Brain Research, 1995, 694, 158-166.	1.1	24
100	Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Research, 1994, 644, 197-204.	1.1	92
101	Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Research, 1993, 614, 137-145.	1.1	87
102	Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Research, 1992, 574, 105-119.	1.1	123
103	Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 977-986.	2.4	38
104	Non-synaptic mechanisms of Ca2+-mediated injury in CNS white matter. Trends in Neurosciences, 1991, 14, 461-468.	4.2	116
105	Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Research, 1991, 546, 18-32.	1.1	179
106	Reverse Operation of the Na+-Ca2+Exchanger Mediates Ca2+Influx during Anoxia in Mammalian CNS White Matter. Annals of the New York Academy of Sciences, 1991, 639, 328-332.	1.8	39
107	Neurobase: a general-purpose program for acquisition, storage and digital processing of transient signals using the Apple Macintosh II computer. Journal of Neuroscience Methods, 1991, 37, 47-54.	1.3	5
108	Effects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxia. Neuroscience Letters, 1990, 115, 293-299.	1.0	59