
Marco Cantini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-Dimensional Tunable Fibronectin-Collagen Platforms for Control of Cell Adhesion and Matrix Deposition. Frontiers in Physics, 2022, 10, .	2.1	3
2	Controlling the formation and alignment of low molecular weight gel â€~noodles'. Chemical Communications, 2021, 57, 8782-8785.	4.1	9
3	Chapter 12. Bioinspired and Bioinstructive Surfaces to Control Mesenchymal Stem Cells. RSC Soft Matter, 2021, , 301-325.	0.4	Ο
4	You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Advanced Healthcare Materials, 2021, 10, e2002048.	7.6	28
5	ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. Materials Science and Engineering C, 2021, 121, 111822.	7.3	14
6	The Plot Thickens: The Emerging Role of Matrix Viscosity in Cell Mechanotransduction. Advanced Healthcare Materials, 2020, 9, e1901259.	7.6	75
7	Material-driven fibronectin assembly rescues matrix defects due to mutations in collagen IV in fibroblasts. Biomaterials, 2020, 252, 120090.	11.4	9
8	T-Cell–Derived miRNA-214 Mediates Perivascular Fibrosis in Hypertension. Circulation Research, 2020, 126, 988-1003.	4.5	59
9	The creatine–phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nature Metabolism, 2020, 2, 62-80.	11.9	96
10	High Efficiency BMP-2 Coatings: Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects (Adv. Sci. 2/2019). Advanced Science, 2019, 6, 1970009.	11.2	2
11	3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. Journal of Tissue Engineering, 2019, 10, 204173141984585.	5.5	59
12	Tissue Engineering: Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks (Adv. Healthcare Mater. 3/2019). Advanced Healthcare Materials, 2019, 8, 1970010.	7.6	5
13	Nanoscale Coatings for Ultralow Dose BMPâ€2â€Driven Regeneration of Criticalâ€ S ized Bone Defects. Advanced Science, 2019, 6, 1800361.	11.2	50
14	Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials, 2019, 8, e1801469.	7.6	15
15	Molecular clutch drives cell response to surface viscosity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1192-1197.	7.1	115
16	The strength of the protein-material interaction determines cell fate. Acta Biomaterialia, 2018, 77, 74-84.	8.3	28
17	Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2774-2784.	2.7	35
18	Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 2017, 126, 61-74.	11.4	61

MARCO CANTINI

#	Article	IF	CITATIONS
19	Cell migration on material-driven fibronectin microenvironments. Biomaterials Science, 2017, 5, 1326-1333.	5.4	23
20	Vitronectin as a Micromanager of Cell Response in Materialâ€Driven Fibronectin Nanonetworks. Advanced Biology, 2017, 1, 1700047.	3.0	11
21	Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior. ACS Nano, 2016, 10, 6638-6647.	14.6	105
22	Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Science Advances, 2016, 2, e1600188.	10.3	104
23	Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface. Langmuir, 2016, 32, 800-809.	3.5	29
24	Material-based strategies to engineer fibronectin matrices for regenerative medicine. International Materials Reviews, 2015, 60, 245-264.	19.3	20
25	Different Organization of Type I Collagen Immobilized on Silanized and Nonsilanized Titanium Surfaces Affects Fibroblast Adhesion and Fibronectin Secretion. ACS Applied Materials & Interfaces, 2015, 7, 20667-20677.	8.0	27
26	A Fractal Nature for Polymerized Laminin. PLoS ONE, 2014, 9, e109388.	2.5	16
27	A Material-Based Platform to Modulate Fibronectin Activity and Focal Adhesion Assembly. BioResearch Open Access, 2014, 3, 286-296.	2.6	35
28	Vitronectin alters fibronectin organization at the cell–material interface. Colloids and Surfaces B: Biointerfaces, 2013, 111, 618-625.	5.0	20
29	Non-monotonic cell differentiation pattern on extreme wettability gradients. Biomaterials Science, 2013, 1, 202-212.	5.4	25
30	Design and Functional Testing of a Multichamber Perfusion Platform for Three-Dimensional Scaffolds. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	18
31	Material-Driven Fibronectin Fibrillogenesis. ACS Symposium Series, 2012, , 471-496.	0.5	5
32	Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter, 2012, 8, 5575.	2.7	30
33	Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine, 2012, 23, 195-204.	3.6	30
34	Numerical Fluid-Dynamic Optimization of Microchannel-Provided Porous Scaffolds for the Co-Culture of Adherent and Non-Adherent Cells. Tissue Engineering - Part A, 2009, 15, 615-623.	3.1	13
35	CFD-Aided Design of a Dynamic Culture System for the Co-Culture of Adherent and Non-Adherent Cells. , 2009, , .		0
36	Metabolite Transport Inside Channeled Porous Scaffolds for Haematopoietic Stem Cell Culture: A Computational Study. , 2008, , .		0