Marco Cantini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336833/publications.pdf

Version: 2024-02-01

361413 395702 1,180 36 20 33 citations h-index g-index papers 39 39 39 2130 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular clutch drives cell response to surface viscosity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1192-1197.	7.1	115
2	Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior. ACS Nano, 2016, 10, 6638-6647.	14.6	105
3	Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Science Advances, 2016, 2, e1600188.	10.3	104
4	The creatine–phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nature Metabolism, 2020, 2, 62-80.	11.9	96
5	The Plot Thickens: The Emerging Role of Matrix Viscosity in Cell Mechanotransduction. Advanced Healthcare Materials, 2020, 9, e1901259.	7.6	75
6	Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 2017, 126, 61-74.	11.4	61
7	3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. Journal of Tissue Engineering, 2019, 10, 204173141984585.	5 . 5	59
8	T-Cell–Derived miRNA-214 Mediates Perivascular Fibrosis in Hypertension. Circulation Research, 2020, 126, 988-1003.	4.5	59
9	Nanoscale Coatings for Ultralow Dose BMPâ€2â€Driven Regeneration of Criticalâ€Sized Bone Defects. Advanced Science, 2019, 6, 1800361.	11.2	50
10	A Material-Based Platform to Modulate Fibronectin Activity and Focal Adhesion Assembly. BioResearch Open Access, 2014, 3, 286-296.	2.6	35
11	Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2774-2784.	2.7	35
12	Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter, 2012, 8, 5575.	2.7	30
13	Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine, 2012, 23, 195-204.	3.6	30
14	Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface. Langmuir, 2016, 32, 800-809.	3.5	29
15	The strength of the protein-material interaction determines cell fate. Acta Biomaterialia, 2018, 77, 74-84.	8.3	28
16	You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Advanced Healthcare Materials, 2021, 10, e2002048.	7.6	28
17	Different Organization of Type I Collagen Immobilized on Silanized and Nonsilanized Titanium Surfaces Affects Fibroblast Adhesion and Fibronectin Secretion. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20667-20677.	8.0	27
18	Non-monotonic cell differentiation pattern on extreme wettability gradients. Biomaterials Science, 2013, 1, 202-212.	5.4	25

#	Article	IF	Citations
19	Cell migration on material-driven fibronectin microenvironments. Biomaterials Science, 2017, 5, 1326-1333.	5.4	23
20	Vitronectin alters fibronectin organization at the cell–material interface. Colloids and Surfaces B: Biointerfaces, 2013, 111, 618-625.	5.0	20
21	Material-based strategies to engineer fibronectin matrices for regenerative medicine. International Materials Reviews, 2015, 60, 245-264.	19.3	20
22	Design and Functional Testing of a Multichamber Perfusion Platform for Three-Dimensional Scaffolds. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	18
23	A Fractal Nature for Polymerized Laminin. PLoS ONE, 2014, 9, e109388.	2.5	16
24	Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials, 2019, 8, e1801469.	7.6	15
25	ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. Materials Science and Engineering C, 2021, 121, 111822.	7.3	14
26	Numerical Fluid-Dynamic Optimization of Microchannel-Provided Porous Scaffolds for the Co-Culture of Adherent and Non-Adherent Cells. Tissue Engineering - Part A, 2009, 15, 615-623.	3.1	13
27	Vitronectin as a Micromanager of Cell Response in Materialâ€Driven Fibronectin Nanonetworks. Advanced Biology, 2017, 1, 1700047.	3.0	11
28	Material-driven fibronectin assembly rescues matrix defects due to mutations in collagen IV in fibroblasts. Biomaterials, 2020, 252, 120090.	11.4	9
29	Controlling the formation and alignment of low molecular weight gel †noodles†M. Chemical Communications, 2021, 57, 8782-8785.	4.1	9
30	Material-Driven Fibronectin Fibrillogenesis. ACS Symposium Series, 2012, , 471-496.	0.5	5
31	Tissue Engineering: Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks (Adv. Healthcare Mater. 3/2019). Advanced Healthcare Materials, 2019, 8, 1970010.	7.6	5
32	Three-Dimensional Tunable Fibronectin-Collagen Platforms for Control of Cell Adhesion and Matrix Deposition. Frontiers in Physics, 2022, 10, .	2.1	3
33	High Efficiency BMP-2 Coatings: Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects (Adv. Sci. 2/2019). Advanced Science, 2019, 6, 1970009.	11.2	2
34	Metabolite Transport Inside Channeled Porous Scaffolds for Haematopoietic Stem Cell Culture: A Computational Study., 2008,,.		0
35	CFD-Aided Design of a Dynamic Culture System for the Co-Culture of Adherent and Non-Adherent Cells. , 2009, , .		0
36	Chapter 12. Bioinspired and Bioinstructive Surfaces to Control Mesenchymal Stem Cells. RSC Soft Matter, 2021, , 301-325.	0.4	0