Graham J Lieschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336661/publications.pdf

Version: 2024-02-01

38720 30894 11,079 106 50 102 citations h-index g-index papers 109 109 109 13099 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics, 2007, 8, 353-367.	7.7	1,829
2	mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood, 2011, 117, e49-e56.	0.6	900
3	Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5592-5596.	3.3	803
4	Granulocyte Colony-Stimulating Factor and Granulocyte-Macrophage Colony-Stimulating Factor. New England Journal of Medicine, 1992, 327, 28-35.	13.9	705
5	Granulocyte Colony-Stimulating Factor and Granulocyte-Macrophage Colony-Stimulating Factor. New England Journal of Medicine, 1992, 327, 99-106.	13.9	448
6	Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood, 2001, 98, 3087-3096.	0.6	419
7	The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. European Journal of Immunology, 1997, 27, 40-44.	1.6	220
8	Immunoresponsive Gene 1 Augments Bactericidal Activity of Macrophage-Lineage Cells by Regulating \hat{l}^2 -Oxidation-Dependent Mitochondrial ROS Production. Cell Metabolism, 2013, 18, 265-278.	7.2	219
9	Fish immunology. Current Biology, 2009, 19, R678-R682.	1.8	197
10	Zebrafish SPI-1 (PU.1) Marks a Site of Myeloid Development Independent of Primitive Erythropoiesis: Implications for Axial Patterning. Developmental Biology, 2002, 246, 274-295.	0.9	193
11	miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood, 2009, 113, 1794-1804.	0.6	184
12	Cohesin-dependent regulation of Runx genes. Development (Cambridge), 2007, 134, 2639-2649.	1.2	178
13	Effects of Bacterially Synthesized Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor in Patients with Advanced Malignancy. Annals of Internal Medicine, 1989, 110, 357.	2.0	177
14	Infection of Zebrafish Embryos with Intracellular Bacterial Pathogens. Journal of Visualized Experiments, 2012, , .	0.2	176
15	Treatment of chemotherapy-induced neutropenia by subcutaneously administered granulocyte colony-stimulating factor with optimization of dose and duration of therapy Journal of Clinical Oncology, 1989, 7, 1554-1562.	0.8	175
16	Real-Time Whole-Body Visualization of Chikungunya Virus Infection and Host Interferon Response in Zebrafish. PLoS Pathogens, 2013, 9, e1003619.	2.1	160
17	Zebrafish in hematology: sushi or science?. Blood, 2008, 111, 3331-3342.	0.6	153
18	Mice Lacking Both Granulocyte Colony-Stimulating Factor (CSF) and Granulocyte-Macrophage CSF Have Impaired Reproductive Capacity, Perturbed Neonatal Granulopoiesis, Lung Disease, Amyloidosis, and Reduced Long-Term Survival. Blood, 1997, 90, 3037-3049.	0.6	149

#	Article	IF	CITATIONS
19	Bioactive murine and human interleukin-12 fusion proteins which retain antitumor activity in vivo. Nature Biotechnology, 1997, 15, 35-40.	9.4	134
20	Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1. Nature, 2014, 512, 314-318.	13.7	122
21	Neutrophil-Delivered Myeloperoxidase Dampens the Hydrogen Peroxide Burst after Tissue Wounding in Zebrafish. Current Biology, 2012, 22, 1818-1824.	1.8	117
22	Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment. Cell Host and Microbe, 2015, 18, 15-26.	5.1	114
23	Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature, 2021, 591, 281-287.	13.7	111
24	<i>Acinetobacter baumannii</i> phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9599-9604.	3.3	109
25	Zebrafish as a model for vertebrate hematopoiesis. Current Opinion in Pharmacology, 2010, 10, 563-570.	1.7	105
26	Development of ramified microglia from early macrophages in the zebrafish optic tectum. Developmental Neurobiology, 2013, 73, 60-71.	1.5	101
27	The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood, 2003, 102, 3238-3240.	0.6	94
28	Hydrogen Peroxide in Inflammation: Messenger, Guide, and Assassin. Advances in Hematology, 2012, 2012, 1-6.	0.6	93
29	Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nature Genetics, 2017, 49, 742-752.	9.4	87
30	The Neutrophil Nucleus: An Important Influence on Neutrophil Migration and Function. Frontiers in Immunology, 2018, 9, 2867.	2.2	86
31	The Wnt Receptor Ryk Plays a Role in Mammalian Planar Cell Polarity Signaling. Journal of Biological Chemistry, 2012, 287, 29312-29323.	1.6	83
32	Developmental biology of zebrafish myeloid cells. International Journal of Developmental Biology, 2002, 46, 483-92.	0.3	83
33	In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. Journal of Clinical Investigation, 2011, 121, 4861-4869.	3.9	81
34	Intron retention enhances gene regulatory complexity in vertebrates. Genome Biology, 2017, 18, 216.	3.8	79
35	Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. International Journal of Biochemistry and Cell Biology, 2014, 56, 92-106.	1.2	76
36	Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis. PLoS Genetics, 2013, 9, e1003279.	1.5	73

#	Article	IF	CITATIONS
37	Characterization of the zebrafish matrix metalloproteinase 9 gene and its developmental expression pattern. Gene Expression Patterns, 2007, 7, 39-46.	0.3	72
38	Comparison of effects of the tyrosine kinase inhibitors AG957, AG490, and STI571 on BCR-ABL–expressing cells, demonstrating synergy between AG490 and STI571. Blood, 2001, 97, 2008-2015.	0.6	71
39	Studies of oral neutrophil levels in patients receiving G SF after autologous marrow transplantation. British Journal of Haematology, 1992, 82, 589-595.	1.2	69
40	Antibiotic resistance and host immune evasion in <i>Staphylococcus aureus</i> mediated by a metabolic adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3722-3727.	3.3	69
41	Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology. Neuromuscular Disorders, 2010, 20, 826-832.	0.3	68
42	Minor class splicing shapes the zebrafish transcriptome during development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3062-3067.	3.3	64
43	DNAzyme Targeting c- <i>jun</i> Suppresses Skin Cancer Growth. Science Translational Medicine, 2012, 4, 139ra82.	5.8	60
44	Macrophages protect Talaromyces marneffei conidia from myeloperoxidase-dependent neutrophil fungicidal activity during infection establishment in vivo. PLoS Pathogens, 2018, 14, e1007063.	2.1	60
45	Blockage of Lysophosphatidic Acid Signaling Improves Spinal Cord Injury Outcomes. American Journal of Pathology, 2012, 181, 978-992.	1.9	59
46	Hematopoietic perturbation in zebrafish expressing a tel-jak2a fusion. Experimental Hematology, 2005, 33, 182-188.	0.2	58
47	The Netrin receptor Neogenin is required for neural tube formation and somitogenesis in zebrafish. Developmental Biology, 2004, 269, 302-315.	0.9	55
48	Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Developmental Biology, 2004, 276, 508-522.	0.9	55
49	CREB activity modulates neural cell proliferation, midbrain–hindbrain organization and patterning in zebrafish. Developmental Biology, 2007, 307, 127-141.	0.9	55
50	In vivo mutation of preâ€mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Letters, 2013, 587, 2150-2157.	1.3	52
51	The zebrafish as a model system for human disease. Frontiers in Bioscience - Landmark, 2002, 7, d827-833.	3.0	50
52	Biocompatibility of Photopolymers in 3D Printing. 3D Printing and Additive Manufacturing, 2017, 4, 185-191.	1.4	50
53	Pharmacology of the colony-stimulating factors. Trends in Pharmacological Sciences, 1989, 10, 154-159.	4.0	48
54	Blocking fatty acid–fueled mROS production within macrophages alleviates acute gouty inflammation. Journal of Clinical Investigation, 2018, 128, 1752-1771.	3.9	48

#	Article	IF	Citations
55	The effects of dose and route of the administration on the pharmacokinetics of granulocyte-macrophage colony-stimulating factor. European Journal of Cancer & Clinical Oncology, 1990, 26, 1064-1069.	0.9	47
56	Specification of the Primitive Myeloid Precursor Pool Requires Signaling through Alk8 in Zebrafish. Current Biology, 2006, 16, 506-511.	1.8	47
57	Abnormal Nuclear Pore Formation Triggers Apoptosis in the Intestinal Epithelium of elys-Deficient Zebrafish. Gastroenterology, 2009, 136, 902-911.e7.	0.6	44
58	PhagoSight: An Open-Source MATLAB® Package for the Analysis of Fluorescent Neutrophil and Macrophage Migration in a Zebrafish Model. PLoS ONE, 2013, 8, e72636.	1.1	41
59	Tyrosine residues of the granulocyte colony-stimulating factor receptor transmit proliferation and differentiation signals in murine bone marrow cells. Blood, 2002, 99, 879-887.	0.6	39
60	Duplicate ZebrafishpthGenes Are Expressed along the Lateral Line and in the Central Nervous System during Embryogenesis. Endocrinology, 2005, 146, 547-551.	1.4	39
61	Grainyhead-like 3 regulation of endothelin-1 in the pharyngeal endoderm is critical for growth and development of the craniofacial skeleton. Mechanisms of Development, 2014, 133, 77-90.	1.7	37
62	Manipulation of Gene Expression During Zebrafish Embryonic Development Using Transient Approaches. Methods in Molecular Biology, 2008, 469, 273-300.	0.4	36
63	Pioneer neutrophils release chromatin within in vivo swarms. ELife, 2021, 10, .	2.8	36
64	Midbrain-hindbrain boundary patterning and morphogenesis are regulated by diverse grainy head-like 2-dependent pathways. Development (Cambridge), 2012, 139, 525-536.	1.2	34
65	Frontline Science: Dynamic cellular and subcellular features of migrating leukocytes revealed by in vivo lattice lightsheet microscopy. Journal of Leukocyte Biology, 2020, 108, 455-468.	1.5	34
66	Nerve Growth Factor Stimulates Cardiac Regeneration via Cardiomyocyte Proliferation in Experimental Heart Failure. PLoS ONE, 2012, 7, e53210.	1.1	33
67	A zebrafish model of inflammatory lymphangiogenesis. Biology Open, 2015, 4, 1270-1280.	0.6	32
68	Toxicological assessment of additively manufactured methacrylates for medical devices in dentistry. Acta Biomaterialia, 2018, 78, 64-77.	4.1	30
69	A GCSFR/CSF3R zebrafish mutant models the persistent basal neutrophil deficiency of severe congenital neutropenia. Scientific Reports, 2017, 7, 44455.	1.6	29
70	The role of the ETS factor erg in zebrafish vasculogenesis. Mechanisms of Development, 2009, 126, 220-229.	1.7	28
71	Computational Quantification of Fluorescent Leukocyte Numbers in Zebrafish Embryos. Methods in Enzymology, 2012, 506, 425-435.	0.4	28
72	The dissociation of GMâ€CSF efficacy from toxicity according to route of administration: a pharmacodynamic study. British Journal of Haematology, 1992, 80, 144-150.	1.2	27

#	Article	IF	Citations
73	The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger. Nature Communications, 2017, 8, 14911.	5.8	27
74	In Vivo Real-Time Visualization of Leukocytes and Intracellular Hydrogen Peroxide Levels During a Zebrafish Acute Inflammation Assay. Methods in Enzymology, 2012, 506, 135-156.	0.4	26
75	Functional deficiencies of peritoneal cells from gene-targeted mice lacking G-CSF or GM-CSF. Journal of Leukocyte Biology, 1999, 65, 256-264.	1.5	25
76	Knockdown of zebrafish crim1 results in a bent tail phenotype with defects in somite and vascular development. Mechanisms of Development, 2006, 123, 277-287.	1.7	23
77	î²-glucan–dependent shuttling of conidia from neutrophils to macrophages occurs during fungal infection establishment. PLoS Biology, 2019, 17, e3000113.	2.6	20
78	Mediator Subunit 12 Is Required for Neutrophil Development in Zebrafish. PLoS ONE, 2011, 6, e23845.	1.1	20
79	Granulocyte-Macrophage Colony-Stimulating Factor for Cancer Treatment. Oncology, 1994, 51, 177-188.	0.9	19
80	Early Clinical Trials with Colony-Stimulating Factors. Cancer Investigation, 1989, 7, 443-456.	0.6	18
81	Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus. Nature Communications, 2021, 12, 6157.	5.8	18
82	Zebrafishâ€"an emerging genetic model for the study of cytokines and hematopoiesis in the era of functional genomics. International Journal of Hematology, 2001, 73, 23-31.	0.7	16
83	Endometrial adenocarcinoma presenting as pituitary apoplexy. Australian and New Zealand Journal of Medicine, 1990, 20, 81-84.	0.5	15
84	Validating microRNA Target Transcripts Using Zebrafish Assays. Methods in Molecular Biology, 2009, 546, 227-240.	0.4	15
85	Utility of clinical comprehensive genomic characterization for diagnostic categorization in patients presenting with hypocellular bone marrow failure syndromes. Haematologica, 2020, 106, 64-73.	1.7	14
86	Transient, flexible gene editing in zebrafish neutrophils and macrophages for determination of cell-autonomous functions. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	11
87	T lymphocytes from granulocyte colony-stimulating factor-/- mice produce large quantities of interferon- \hat{l}^3 in a chronic infection model. Immunology, 2000, 101, 132-139.	2.0	10
88	Physiological neutrophilia of pregnancy is not associated with a rise in plasma granulocyte colony-stimulating factor (G-CSF). American Journal of Hematology, 1995, 48, 288-288.	2.0	9
89	Splicing dysfunction and disease: The case of granulopoiesis. Seminars in Cell and Developmental Biology, 2018, 75, 23-39.	2.3	8
90	Hematopoietic growth factors: the scenario in zebrafish. Growth Factors, 2018, 36, 196-212.	0.5	7

#	Article	IF	Citations
91	The Resistance to Host Antimicrobial Peptides in Infections Caused by Daptomycin-Resistant Staphylococcus aureus. Antibiotics, 2021, 10, 96.	1.5	6
92	CSFâ€Deficient Mice — What Have They Taught Us?. Novartis Foundation Symposium, 1997, 204, 60-77.	1.2	6
93	Resolution of intracardiac masses. Journal of Thoracic and Cardiovascular Surgery, 1989, 97, 637-639.	0.4	4
94	Characterisation of duplicate zinc finger like 2 erythroid precursor genes in zebrafish. Development Genes and Evolution, 2006, 216, 523-529.	0.4	4
95	Discerning Different In vivo Roles of MicroRNAs by Experimental Approaches in Zebrafish. Methods in Cell Biology, 2011, 104, 353-378.	0.5	4
96	Immune Priming: Mothering Males Modulate Immunity. Current Biology, 2013, 23, R76-R78.	1.8	4
97	Recombinant alphaâ€2b interferon in patients with malignant carcinoid tumour. Australian and New Zealand Journal of Medicine, 1991, 21, 875-878.	0.5	3
98	Relapsed blastic natural killer cell leukaemia with splenic rupture. British Journal of Haematology, 2006, 135, 2-2.	1.2	2
99	Experimental approaches to studying the nature and impact of splicing variation in zebrafish. Methods in Cell Biology, 2016, 135, 259-288.	0.5	2
100	SWI/SNF Protein SMARCD2 Orchestrates Transcriptional Networks Controlling Hematopoiesis and Neutrophil Granulocytes in Humans, Mice and Zebrafish. Blood, 2016, 128, 2-2.	0.6	2
101	Abnormal protein tyrosine kinases associated with human haematological malignancies. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2002, 14, 79-83.	0.7	1
102	Fluorescent neutrophils throw the spotlight on inflammation. Blood, 2006, 108, 3961-3962.	0.6	1
103	Local affine texture tracking for serial registration of zebrafish images. , 2012, , .		1
104	G-CSF and GM-CSF: Clinical issues in lung cancer management. Lung Cancer, 1994, 11, 187-188.	0.9	0
105	MED12 in hematopoietic stem cellsâ€"cell specific function despite ubiquitous expression. Stem Cell Investigation, 2017, 4, 3-3.	1.3	0
106	Zbtb11, an Evolutionarily Conserved Pu.1-Regulated Transcriptional Repressor of TP53, Is Required for Neutrophil Development. Blood, 2015, 126, 1180-1180.	0.6	0