N Shamsaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Additively manufactured Haynes 282: effect of unimodal vs. bimodal Î ³ Ê ¹ - microstructure on mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142234.	5.6	21
2	Microstructure and Deformation Behavior of Additively Manufactured 17–4 Stainless Steel: Laser Powder Bed Fusion vs. Laser Powder Directed Energy Deposition. Jom, 2022, 74, 1136-1148.	1.9	8
3	Bending properties of additively manufactured commercially pure titanium (CPTi) limited contact dynamic compression plate (LC-DCP) constructs: Effect of surface treatment. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105042.	3.1	4
4	Correlation between tensile properties, microstructure, and processing routes of an Al–Cu–Mg–Ag–TiB2 (A205) alloy: Additive manufacturing and casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 841, 142989.	5.6	48
5	Synergistic effect of microstructure and defects on the initiation of fatigue cracks in additively manufactured Inconel 718. International Journal of Fatigue, 2022, 162, 107002.	5.7	18
6	Fatigue failure mechanisms for AlSi10Mg manufactured by L-PBF under axial and torsional loads: The role of defects and residual stresses. International Journal of Fatigue, 2022, 162, 106903.	5.7	29
7	A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys. International Journal of Fatigue, 2021, 146, 106165.	5.7	67
8	Spatial inhomogeneity of build defects across the build plate in laser powder bed fusion. Additive Manufacturing, 2021, 47, 102333.	3.0	8
9	Fatigue of additive manufactured Ti-6Al-4V, Part II: The relationship between microstructure, material cyclic properties, and component performance. International Journal of Fatigue, 2020, 132, 105363.	5.7	152
10	Additive manufacturing of fatigue resistant austenitic stainless steels by understanding process-structure–property relationships. Materials Research Letters, 2020, 8, 8-15.	8.7	46
11	Fatigue of additive manufactured Ti-6Al-4V, Part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects. International Journal of Fatigue, 2020, 132, 105358.	5.7	132
12	Effects of Postprocess Thermal Treatments on Static and Cyclic Deformation Behavior of Additively Manufactured Austenitic Stainless Steel. Jom, 2020, 72, 1355-1365.	1.9	6
13	Effect of alloying elements on the γ' antiphase boundary energy in Ni-base superalloys. Intermetallics, 2020, 117, 106670.	3.9	49
14	Multiaxial high-cycle fatigue life prediction under random spectrum loadings. International Journal of Fatigue, 2020, 134, 105462.	5.7	32
15	Fatigue behavior and modeling for additive manufactured 304L stainless steel: The effect of surface roughness. International Journal of Fatigue, 2020, 141, 105856.	5.7	70
16	Fatigue behavior of additively manufactured 17-4 PH stainless steel: The effects of part location and powder re-use. Additive Manufacturing, 2020, 36, 101398.	3.0	24
17	Dexamethasone eluting 3D printed metal devices for bone injuries. Therapeutic Delivery, 2020, 11, 373-386.	2.2	10
18	Effect of heat treatments on pore morphology and microstructure of laser additive manufactured parts. Material Design and Processing Communications, 2019, 1, e29.	0.9	12

N Shamsaei

#	Article	IF	CITATIONS
19	Tribological behavior of 17–4â€ ⁻ PH stainless steel fabricated by traditional manufacturing and laser-based additive manufacturing methods. Wear, 2019, 440-441, 203100.	3.1	23
20	Fatigue life estimation of additive manufactured parts in the asâ€built surface condition. Material Design and Processing Communications, 2019, 1, e36.	0.9	26
21	Towards predicting differences in fatigue performance of laser powder bed fused Ti-6Al-4V coupons from the same build. International Journal of Fatigue, 2019, 126, 284-296.	5.7	38
22	Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness. Additive Manufacturing, 2019, 28, 23-38.	3.0	92
23	Fatigue behaviour of additive manufactured materials: An overview of some recent experimental studies on <scp>Tiâ€6Alâ€4V</scp> considering various processing and loading direction effects. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 991-1009.	3.4	130
24	Powder Recycling Effects on the Tensile and Fatigue Behavior of Additively Manufactured Ti-6Al-4V Parts. Jom, 2019, 71, 963-973.	1.9	89
25	Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V. International Journal of Fatigue, 2019, 120, 342-352.	5.7	68
26	Tribocorrosion behavior of additive manufactured Ti-6Al-4V biomedical alloy. Tribology International, 2018, 119, 381-388.	5.9	66
27	Depth-sensing time-dependent response of additively manufactured Ti-6Al-4V alloy. Additive Manufacturing, 2018, 24, 37-46.	3.0	17
28	Load sequence effects and variable amplitude fatigue of superelastic NiTi. International Journal of Mechanical Sciences, 2018, 148, 307-315.	6.7	18
29	A numerical and experimental investigation of convective heat transfer during laser-powder bed fusion. Additive Manufacturing, 2018, 22, 729-745.	3.0	26
30	Overview on Microstructure- and Defect-Sensitive Fatigue Modeling of Additively Manufactured Materials. Jom, 2018, 70, 1853-1862.	1.9	48
31	Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. International Journal of Fatigue, 2017, 94, 218-235.	5.7	413
32	Cyclic strain rate effect on martensitic transformation and fatigue behaviour of an austenitic stainless steel. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 2080-2091.	3.4	35
33	Fatigue Behavior and Modeling of Additively Manufactured Ti-6Al-4V Including Interlayer Time Interval Effects. Jom, 2017, 69, 2698-2705.	1.9	25
34	Energy harvesting via thermo-piezoelectric transduction within a heated capillary. Applied Physics Letters, 2017, 111, .	3.3	13
35	Fatigue Modeling for Superelastic NiTi Considering Cyclic Deformation and Load Ratio Effects. Shape Memory and Superelasticity, 2017, 3, 250-263.	2.2	15
36	Strain-based fatigue data for Ti–6Al–4V ELI under fully-reversed and mean strain loads. Data in Brief, 2016, 7, 12-15.	1.0	18

N SHAMSAEI

#	Article	IF	CITATIONS
37	Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel. Data in Brief, 2016, 7, 89-92.	1.0	16
38	Transferability of the twoâ€parameter fracture criterion for 2219 aluminium alloy cracked configurations. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 335-345.	3.4	6
39	Data related to cyclic deformation and fatigue behavior of direct laser deposited Ti–6Al–4V with and without heat treatment. Data in Brief, 2016, 6, 970-973.	1.0	3
40	Fatigue life predictions for irradiated stainless steels considering void swellings effects. Engineering Failure Analysis, 2016, 59, 79-98.	4.0	3
41	Cyclic deformation and fatigue behavior of polyether ether ketone (PEEK). International Journal of Fatigue, 2016, 82, 411-427.	5.7	52
42	Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 236-249.	3.1	30
43	Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Alloys: An Experimental Investigation. Procedia Engineering, 2015, 133, 646-654.	1.2	30
44	Fatigue of Nitinol: The state-of-the-art and ongoing challenges. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 228-254.	3.1	155
45	An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Additive Manufacturing, 2015, 8, 12-35.	3.0	695
46	Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 171-183.	5.6	466
47	An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Additive Manufacturing, 2015, 8, 36-62.	3.0	694
48	Multiaxial life predictions in absence of any fatigue properties. International Journal of Fatigue, 2014, 67, 62-72.	5.7	33
49	Effect of hardness on multiaxial fatigue behaviour and some simple approximations for steels. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32, 631-646.	3.4	101