
Nathaniel J Quitoriano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reconciling Nano- and Micro-Scale VLS Growth by Including Multi-Scale Supersaturation: A Growth Model Applied to Lateral Ge Films on Si. IEEE Nanotechnology Magazine, 2021, 20, 592-597.	2.0	2
2	Capturing Dislocation Half-Loop Formation and Dynamics in Epitaxial Growth Atomistically at Diffusive Time Scales. Materialia, 2021, 20, 101253.	2.7	3
3	Modeling Metal-Catalyzed Lateral Epitaxy. , 2020, , .		1
4	Growth conditions of metal-catalyzed, laterally grown Ge films on Si. Thin Solid Films, 2020, 709, 138133.	1.8	1
5	Liquid phase epitaxy SiGe films on a CVD-grown SiGe/Si (0Â0Â1) graded film. Journal of Crystal Growth, 2020, 535, 125541.	1.5	1
6	Transmission electron microscopy dislocation study of Ge-on-Si films supporting a new lattice-mismatch relaxation mechanism. Journal of Applied Physics, 2020, 127, 075301.	2.5	2
7	Hot Extrusion of ZnSb-Based Thermoelectric Materials; A Novel Approach for Scale-Up Production. Journal of Manufacturing and Materials Processing, 2019, 3, 58.	2.2	1
8	Effects of Au catalyst geometry on Ge films grown laterally on Si using the vapor–liquid–solid mechanism. Journal Physics D: Applied Physics, 2019, 52, 255101.	2.8	5
9	SiGe films and graded buffers grown by liquid phase epitaxy from different growth solution compositions. Journal of Crystal Growth, 2019, 510, 65-75.	1.5	4
10	New Relaxation Mechanism Enabling High-Quality, Laterally Grown Ge on Si. Crystal Growth and Design, 2019, 19, 23-29.	3.0	6
11	Reduction of threading dislocation density in SiGe epilayer on Si (0â€ ⁻ 0â€ ⁻ 1) by lateral growth liquid-phase epitaxy. Journal of Crystal Growth, 2018, 483, 223-227.	1.5	5
12	Asymmetric, compressive, SiGe epilayers on Si grown by lateral liquid-phase epitaxy utilizing a distinction between dislocation nucleation and glide critical thicknesses. Journal of Crystal Growth, 2018, 482, 15-22.	1.5	6
13	Growth evolution of SiGe graded buffers during LPE cooling process. Journal of Crystal Growth, 2018, 502, 54-63.	1.5	2
14	Low-temperature, vapor–liquid–solid, laterally grown silicon films using alloyed catalysts. Materials Research Express, 2014, 1, 046411.	1.6	4
15	Interpreting Kelvin probe force microscopy under an applied electric field: local electronic behavior of vapor–liquid–solid Si nanowires. Nanotechnology, 2013, 24, 205704.	2.6	5
16	Lateral, Ge, nanowire growth on SiO ₂ . Nanotechnology, 2011, 22, 065201.	2.6	8
17	Lateral, high-quality, metal-catalyzed semiconductor growth on amorphous and lattice-mismatched substrates for photovoltaics. Applied Physics Letters, 2010, 97, 132110.	3.3	9
18	Guiding vapor–liquid–solid nanowire growth using SiO ₂ . Nanotechnology, 2009, 20, 145303	2.6	20

#	Article	IF	CITATIONS
19	Integratable Nanowire Transistors. Nano Letters, 2008, 8, 4410-4414.	9.1	54
20	Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation. Journal of Applied Physics, 2007, 102, .	2.5	90