
David J Mandia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic Layer Deposition of Gold Metal. Chemistry of Materials, 2016, 28, 44-46.	6.7	88
2	The chemical physics of sequential infiltration synthesis—A thermodynamic and kinetic perspective. Journal of Chemical Physics, 2019, 151, 190901.	3.0	76
3	Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2019, 9, 3198-3207.	11.2	68
4	Janus Membranes via Diffusionâ€Controlled Atomic Layer Deposition. Advanced Materials Interfaces, 2018, 5, 1800658.	3.7	59
5	Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating. Optics Letters, 2015, 40, 1713.	3.3	56
6	Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts. Journal of the American Chemical Society, 2018, 140, 10710-10720.	13.7	54
7	Sequential Infiltration Synthesis of Electronic Materials: Group 13 Oxides via Metal Alkyl Precursors. Chemistry of Materials, 2019, 31, 5274-5285.	6.7	48
8	Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles. Optics Express, 2013, 21, 245.	3.4	46
9	Surfactant Directed Growth of Gold Metal Nanoplates by Chemical Vapor Deposition. Chemistry of Materials, 2015, 27, 6116-6124.	6.7	35
10	Effective Permittivity of Ultrathin Chemical Vapor Deposited Gold Films on Optical Fibers at Infrared Wavelengths. Journal of Physical Chemistry C, 2014, 118, 670-678.	3.1	30
11	Atomic layer deposition of molybdenum disulfide films using MoF6 and H2S. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	29
12	Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions. Optics Express, 2014, 22, 31665.	3.4	25
13	Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes. Jom, 2019, 71, 212-223.	1.9	25
14	Resolving the Atomic Structure of Sequential Infiltration Synthesis Derived Inorganic Clusters. ACS Nano, 2020, 14, 14846-14860.	14.6	25
15	Thermally Robust Gold and Silver Iminopyrrolidinates for Chemical Vapor Deposition of Metal Films. Chemistry of Materials, 2013, 25, 4566-4573.	6.7	24
16	Probing the Atomic-Scale Structure of Amorphous Aluminum Oxide Grown by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 22804-22814.	8.0	23
17	Tris(dimethylamido)aluminum(III): An overlooked atomic layer deposition precursor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	17
18	The effect of ALD-grown Al ₂ O ₃ on the refractive index sensitivity of CVD gold-coated optical fiber sensors. Nanotechnology, 2015, 26, 434002.	2.6	16

DAVID J MANDIA

#	Article	IF	CITATIONS
19	High-Temperature Selective Emitter Design and Materials: Titanium Aluminum Nitride Alloys for Thermophotovoltaics. ACS Applied Materials & Interfaces, 2019, 11, 41347-41355.	8.0	16
20	Plasma-Enhanced Atomic Layer Deposition of p-Type Copper Oxide Semiconductors with Tunable Phase, Oxidation State, and Morphology. Journal of Physical Chemistry C, 2021, 125, 9383-9390.	3.1	15
21	Plasma-Enhanced Atomic Layer Deposition of TiAlN: Compositional and Optoelectronic Tunability. ACS Applied Materials & amp; Interfaces, 2019, 11, 11602-11611.	8.0	12
22	In Situ Deposition Monitoring by a Tilted Fiber Bragg Grating Optical Probe: Probing Nucleation in Chemical Vapour Deposition of Gold. Physics Procedia, 2013, 46, 12-20.	1.2	11
23	CVD on Optical Fibers: Tilted Fiber Bragg Gratings as Realâ€time Sensing Platforms. Chemical Vapor Deposition, 2015, 21, 4-20.	1.3	10
24	New Compounds and Phase Selection of Nickel Sulfides via Oxidation State Control in Molten Hydroxides. Journal of the American Chemical Society, 2021, 143, 13646-13654.	13.7	10
25	Formation of Unsaturated Hydrocarbons and Hydrogen: Surface Chemistry of Methyltrioxorhenium(VII) in ALD of Mixed-Metal Oxide Structures Comprising Re(III) Units. Chemistry of Materials, 2019, 31, 7821-7832.	6.7	8
26	Enrichment and Distribution of Pb ²⁺ Ions in Zwitterionic Poly(cysteine methacrylate) Brushes at the Solid–Liquid Interface. Langmuir, 2019, 35, 17082-17089.	3.5	6
27	Chemical vapor deposition of anisotropic ultrathin gold films on optical fibers: real-time sensing by tilted fiber Bragg gratings and use of a dielectric pre-coating. , 2014, , .		2
28	Using a Vaporâ€Phase Surfactant to Control Gold Metal Plate Growth. Advanced Materials Interfaces, 2017, 4, 1600864.	3.7	2
29	Anomalous refractive index of ultrathin gold nanoparticle film coated on tilted fiber Bragg grating. , 2014, , .		1
30	(Invited) Metallic Nanocoatings on Optical Fibers as a Sensor Platform. ECS Transactions, 2015, 69, 171-179.	0.5	1
31	Monitoring of the Insulator-to-Metal Transition of Ultrathin Gold Coatings on Optical Fibers. , 2015, ,		0