
Raymond E Zielinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CALMODULIN AND CALMODULIN-BINDING PROTEINS IN PLANTS. Annual Review of Plant Biology, 1998, 49, 697-725.	14.3	429
2	Primary Structures of <i>Arabidopsis</i> Calmodulin Isoforms Deduced from the Sequences of cDNA Clones. Plant Physiology, 1991, 96, 1196-1202.	4.8	97
3	The differential effects of herbivory by first and fourth instars of Trichoplusia ni (Lepidoptera:) Tj ETQq1 1 0.7843 527-536.	814 rgBT / 4.8	Overlock 10 96
4	DRL1, a Homolog of the Yeast TOT4/KTI12 Protein, Has a Function in Meristem Activity and Organ Growth in Plants. Plant Cell, 2003, 15, 639-654.	6.6	84
5	Expression of plant cyclic nucleotide-gated cation channels in yeast. Journal of Experimental Botany, 2006, 57, 125-138.	4.8	82
6	Characterization of three new members of the Arabidopsis thaliana calmodulin gene family: conserved and highly diverged members of the gene family functionally complement a yeast calmodulin null. Planta, 2002, 214, 446-455.	3.2	81
7	Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Molecular Biology, 1992, 19, 649-664.	3.9	80
8	Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiology and Biochemistry, 2003, 41, 945-954.	5.8	79
9	Enhancing Arabidopsis Leaf Growth by Engineering the BRASSINOSTEROID INSENSITIVE1 Receptor Kinase Â Â. Plant Physiology, 2011, 157, 120-131.	4.8	76
10	Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Molecular Biology, 1993, 22, 215-225.	3.9	72
11	The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiologia Plantarum, 1997, 101, 173-182.	5.2	71
12	Calcium/calmodulin inhibition of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase provides a possible link between calcium and brassinosteroid signalling. Biochemical Journal, 2012, 443, 515-523.	3.7	66
13	Cloning of cDNA Sequences Encoding the Calcium-Binding Protein, Calmodulin, from Barley (<i>Hordeum vulgare</i> L.). Plant Physiology, 1989, 90, 714-719.	4.8	65
14	Differential Stimulation of NAD Kinase and Binding of Peptide Substrates by Wild-Type and Mutant Plant Calmodulin Isoforms. Archives of Biochemistry and Biophysics, 1996, 327, 53-60.	3.0	65
15	Revisiting paradigms of Ca2+ signaling protein kinase regulation in plants. Biochemical Journal, 2018, 475, 207-223.	3.7	61
16	Interaction of a Kinesin-like Protein with Calmodulin Isoforms from Arabidopsis. Journal of Biological Chemistry, 1999, 274, 31727-31733.	3.4	59
17	Coordinate Expression of Rubisco Activase and Rubisco during Barley Leaf Cell Development. Plant Physiology, 1989, 90, 516-521.	4.8	51
18	Autophosphorylation-based Calcium (Ca2+) Sensitivity Priming and Ca2+/Calmodulin Inhibition of Arabidopsis thaliana Ca2+-dependent Protein Kinase 28 (CPK28). Journal of Biological Chemistry, 2017, 292, 3988-4002.	3.4	48

RAYMOND E ZIELINSKI

#	Article	IF	CITATIONS
19	Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of <i>Arabidopsis</i> BRI1-associated receptor-like kinase 1 (BAK1) <i>inÂvitro</i> . Biochemical Journal, 2015, 467, 399-413.	3.7	37
20	Isolation of an Arabidopsis cDNA sequence encoding a 22 kDa calcium-binding protein (CaBP-22) related to calmodulin. Plant Molecular Biology, 1993, 22, 207-214.	3.9	36
21	CDPKs are dualâ€specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity. FEBS Letters, 2012, 586, 4070-4075.	2.8	34
22	Calmodulin mRNA in Barley (<i>Hordeum vulgare</i> L.). Plant Physiology, 1987, 84, 937-943.	4.8	31
23	tâ€5NAREs bind the Rhg1 αâ€5NAP and mediate soybean cyst nematode resistance. Plant Journal, 2020, 104, 318-331.	5.7	24
24	Synthesis and Accumulation of Calmodulin in Suspension Cultures of Carrot (Daucus carota L.). Plant Physiology, 1992, 100, 812-819.	4.8	22
25	Chapter 34 Production of Recombinant Plant Calmodulin and Its Use to Detect Calmodulin-Binding Proteins. Methods in Cell Biology, 1995, 49, 487-500.	1.1	21
26	Protein Kinase Activities in Tonoplast and Plasmalemma Membranes from Corn Roots. Plant Physiology, 1989, 89, 151-158.	4.8	20
27	Calmodulin Isoforms Differentially Enhance the Binding of Cauliflower Nuclear Proteins and Recombinant TGA3 to a Region Derived from the Arabidopsis Cam-3 Promoter. Plant Cell, 1996, 8, 1069.	6.6	17
28	The Plastid Casein Kinase 2 Phosphorylates Rubisco Activase at the Thr-78 Site but Is Not Essential for Regulation of Rubisco Activation State. Frontiers in Plant Science, 2016, 7, 404.	3.6	15
29	Spatial association of photosynthesis and chemical defense in <i>Arabidopsis thaliana</i> following herbivory by <i>Trichoplusia ni</i> . Physiologia Plantarum, 2009, 137, 115-124.	5.2	14
30	Preparation of Recombinant Plant Calmodulin Isoforms. , 2002, 172, 143-149.		13
31	The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiologia Plantarum, 1997, 101, 173-182.	5.2	13
32	Isolation of cDNA and genomic DNA clones encoding a calmodulin-binding protein related to a family of ATPases involved in cell division and vesicle fusion. Planta, 2001, 212, 774-781.	3.2	11
33	The role of invertases in plant compensatory responses to simulated herbivory. BMC Plant Biology, 2015, 15, 278.	3.6	11
34	Functional analysis of the BRI1 receptor kinase by Thr-for-Ser substitution in a regulatory autophosphorylation site. Frontiers in Plant Science, 2015, 6, 562.	3.6	10
35	Expression of Maturationâ€Specific Genes in Soybean Seeds. Crop Science, 1990, 30, 1343-1350.	1.8	8
36	Effect of Ca2+ and Calmodulin on ΔpH Formation in Tonoplast Vesicles from Corn Roots. Plant Physiology, 1990, 92, 850-854.	4.8	6

#	Article	IF	CITATIONS
37	Regulation of the Arabidopsis thaliana Ca2+â€dependent protein kinase, CPK28, by autophosphorylation and Calmodulinâ€binding. FASEB Journal, 2017, 31, 772.13.	0.5	0