Steffen Frahm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335989/publications.pdf

Version: 2024-02-01

		1163117	1125743	
17	178	8	13	
papers	citations	h-index	g-index	
17	17	17	186	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Activation of peripheral nerve fibers by electrical stimulation in the sole of the foot. BMC Neuroscience, 2013, 14, 116.	1.9	25
2	Distinct temporal filtering mechanisms are engaged during dynamic increases and decreases of noxious stimulus intensity. Pain, 2015, 156, 1906-1912.	4.2	21
3	Membrane properties in small cutaneous nerve fibers in humans. Muscle and Nerve, 2017, 55, 195-201.	2.2	21
4	Nerve Fiber Activation During Peripheral Nerve Field Stimulation: Importance of Electrode Orientation and Estimation of Area of Paresthesia. Neuromodulation, 2016, 19, 311-318.	0.8	20
5	Surface EMG crosstalk during phasic involuntary muscle activation in the nociceptive withdrawal reflex. Muscle and Nerve, 2012, 46, 228-236.	2.2	14
6	Experimental and model-based analysis of differences in perception of cutaneous electrical stimulation across the sole of the foot. Medical and Biological Engineering and Computing, 2013, 51, 999-1009.	2.8	13
7	Tempo-spatial discrimination is lower for noxious stimuli than for innocuous stimuli. Pain, 2018, 159, 393-401.	4.2	13
8	Small and large cutaneous fibers display different excitability properties to slowly increasing ramp pulses. Journal of Neurophysiology, 2020, 124, 883-894.	1.8	11
9	Muscle Activation During Peripheral Nerve Field Stimulation Occurs Due to Recruitment of Efferent Nerve Fibers, Not Direct Muscle Activation. Neuromodulation, 2016, 19, 587-596.	0.8	7
10	New Insights into Cutaneous Laser Stimulation – Dependency on Skin and Laser Type. Neuroscience, 2020, 448, 71-84.	2.3	7
11	Cutaneous nociceptive sensitization affects the directional discrimination – but not the 2-point discrimination. Scandinavian Journal of Pain, 2019, 19, 605-613.	1.3	6
12	The two-point discrimination threshold depends both on the stimulation noxiousness and modality. Experimental Brain Research, 2021, 239, 1439-1449.	1.5	6
13	Directional discrimination is better for noxious laser stimuli than for innocuous laser stimuli. European Journal of Pain, 2020, 24, 742-751.	2.8	4
14	Spinal spatial integration of nociception and its functional role assessed via the nociceptive withdrawal reflex and psychophysical measures in healthy humans. Physiological Reports, 2020, 8, e14648.	1.7	4
15	Spinal Nociception is Facilitated during Cognitive Distraction. Neuroscience, 2022, 491, 134-145.	2.3	4
16	Tempo-spatial integration of nociceptive stimuli assessed via the nociceptive withdrawal reflex in healthy humans. Journal of Neurophysiology, 2021, 126, 373-382.	1.8	2
17	Tempo-spatial discrimination to non-noxious stimuli is better than for noxious stimuli. Scandinavian Journal of Pain, 2017, 16, 171-171.	1.3	0