Benjamin R Tenoever

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335957/publications.pdf

Version: 2024-02-01

41323 15,759 100 49 citations h-index papers

g-index 130 130 130 24515 docs citations times ranked citing authors all docs

34964

98

#	Article	IF	CITATIONS
1	BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nature Cell Biology, 2022, 24, 24-34.	4.6	47
2	Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell, 2022, 185, 1052-1064.e12.	13.5	154
3	Disulfiram inhibits neutrophil extracellular trap formation and protects rodents from acute lung injury and SARS-CoV-2 infection. JCI Insight, 2022, 7, .	2.3	54
4	The Host Factor ANP32A Is Required for Influenza A Virus vRNA and cRNA Synthesis. Journal of Virology, 2022, 96, jvi0209221.	1.5	15
5	Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. ELife, 2022, 11, .	2.8	34
6	SARS-CoV-2 Infection Induces Ferroptosis of Sinoatrial Node Pacemaker Cells. Circulation Research, 2022, 130, 963-977.	2.0	49
7	Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nature Communications, 2022, 13, 1898.	5.8	16
8	Inflammatory responses in the placenta upon SARS-CoV-2 infection late in pregnancy. IScience, 2022, 25, 104223.	1.9	58
9	Protocols for SARS-CoV-2 infection in primary ocular cells and eye organoids. STAR Protocols, 2022, 3, 101383.	0.5	3
10	A diminished immune response underlies age-related SARS-CoV-2 pathologies. Cell Reports, 2022, 39, 111002.	2.9	20
11	SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery. Science Translational Medicine, 2022, 14, .	5.8	129
12	The Host Response to Influenza A Virus Interferes with SARS-CoV-2 Replication during Coinfection. Journal of Virology, 2022, 96, .	1.5	23
13	Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589, 270-275.	13.7	389
14	Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells. Cell, 2021, 184, 92-105.e16.	13.5	480
15	The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. ELife, 2021, 10, .	2.8	173
16	Common Genetic Variation in Humans Impacts InÂVitro Susceptibility to SARS-CoV-2 Infection. Stem Cell Reports, 2021, 16, 505-518.	2.3	39
17	Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity, 2021, 54, 557-570.e5.	6.6	153
18	Reduced Nucleoprotein Availability Impairs Negative-Sense RNA Virus Replication and Promotes Host Recognition. Journal of Virology, 2021, 95, .	1.5	26

#	Article	lF	CITATIONS
19	An Immuno-Cardiac Model for Macrophage-Mediated Inflammation in COVID-19 Hearts. Circulation Research, 2021, 129, 33-46.	2.0	40
20	A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nature Biomedical Engineering, 2021, 5, 815-829.	11.6	228
21	TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell, 2021, 184, 2618-2632.e17.	13.5	80
22	SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell, 2021, 28, 1205-1220.e7.	5.2	44
23	Limited intestinal inflammation despite diarrhea, fecal viral RNA and SARS-CoV-2-specific IgA in patients with acute COVID-19. Scientific Reports, 2021, 11, 13308.	1.6	50
24	Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus. Genome Biology, 2021, 22, 242.	3.8	40
25	SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metabolism, 2021, 33, 1577-1591.e7.	7.2	123
26	Ancient viral genomes reveal introduction of human pathogenic viruses into Mexico during the transatlantic slave trade. ELife, $2021,10,10$	2.8	23
27	The NF-κB Transcriptional Footprint Is Essential for SARS-CoV-2 Replication. Journal of Virology, 2021, 95, e0125721.	1.5	69
28	Cardiomyocytes recruit monocytes upon SARS-CoV-2 infection by secretingÂCCL2. Stem Cell Reports, 2021, 16, 2274-2288.	2.3	37
29	Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metabolism, 2021, 33, 2174-2188.e5.	7.2	127
30	Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Science Immunology, 2021, 6, eabm3131.	5.6	37
31	SARS-CoV-2 Ion Channel ORF3a Enables TMEM16F-Dependent Phosphatidylserine Externalization to Augment Procoagulant Activity of the Tenase and Prothrombinase Complexes. Blood, 2021, 138, 1-1.	0.6	11
32	Rapid Dissemination and Monopolization of Viral Populations in Mice Revealed Using a Panel of Barcoded Viruses. Journal of Virology, 2020, 94, .	1.5	14
33	Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 2020, 181, 1036-1045.e9.	13.5	3,572
34	A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell, 2020, 27, 125-136.e7.	5.2	543
35	Synthetic Virology: Building Viruses to Better Understand Them. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038703.	2.9	2
36	The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell, 2020, 182, 685-712.e19.	13.5	825

#	Article	IF	CITATIONS
37	SARS-CoV-2 Infection of Ocular Cells from Human Adult Donor Eyes and hESC-Derived Eye Organoids. SSRN Electronic Journal, 2020, , 3650574.	0.4	31
38	Viral Fitness Landscapes in Diverse Host Species Reveal Multiple Evolutionary Lines for the NS1 Gene of Influenza A Viruses. Cell Reports, 2019, 29, 3997-4009.e5.	2.9	13
39	Type I interferon response impairs differentiation potential of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1384-1393.	3.3	44
40	Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication. Cell Reports, 2018, 23, 596-607.	2.9	185
41	miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1069-1074.	3.3	31
42	RNase III Nucleases and the Evolution of Antiviral Systems. BioEssays, 2018, 40, 1700173.	1.2	13
43	RNA virus building blocks—miRNAs not included. PLoS Pathogens, 2018, 14, e1006963.	2.1	16
44	Homologous recombination is an intrinsic defense against antiviral RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9211-E9219.	3.3	17
45	Questioning antiviral RNAi in mammals. Nature Microbiology, 2017, 2, 17052.	5.9	32
46	Efficient and Robust <i>Paramyxoviridae</i> Reverse Genetics Systems. MSphere, 2017, 2, .	1.3	55
47	Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model. Journal of Virology, 2017, 91, .	1.5	33
48	Broadly protective murine monoclonal antibodies against influenza B virus target highly conserved neuraminidase epitopes. Nature Microbiology, 2017, 2, 1415-1424.	5.9	96
49	RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature, 2017, 547, 114-117.	13.7	57
50	DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. Cell Host and Microbe, 2016, 20, 674-681.	5.1	292
51	The Evolution of Antiviral Defense Systems. Cell Host and Microbe, 2016, 19, 142-149.	5.1	129
52	microRNA Function Is Limited to Cytokine Control in the Acute Response to Virus Infection. Cell Host and Microbe, 2015, 18, 714-722.	5.1	33
53	Engineered Mammalian RNAi Can Elicit Antiviral Protection that Negates the Requirement for the Interferon Response. Cell Reports, 2015, 13, 1456-1466.	2.9	32
54	InÂVivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus. Cell Reports, 2015, 11, 1714-1726.	2.9	75

#	Article	IF	CITATIONS
55	Mitogen-activated Protein Kinase-mediated Licensing of Interferon Regulatory Factor 3/7 Reinforces the Cell Response to Virus. Journal of Biological Chemistry, 2014, 289, 299-311.	1.6	23
56	Response to Voinnet etÂal Cell Reports, 2014, 9, 798-799.	2.9	4
57	Drosha as an interferon-independent antiviral factor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7108-7113.	3.3	64
58	A Versatile RNA Vector for Delivery of Coding and Noncoding RNAs. Journal of Virology, 2014, 88, 2333-2336.	1.5	14
59	Influenza A Virus Transmission Bottlenecks Are Defined by Infection Route and Recipient Host. Cell Host and Microbe, 2014, 16, 691-700.	5.1	215
60	Long-term survival of influenza virus infected club cells drives immunopathology. Journal of Experimental Medicine, 2014, 211, 1707-1714.	4.2	74
61	The Mammalian Response to Virus Infection Is Independent of Small RNA Silencing. Cell Reports, 2014, 8, 114-125.	2.9	67
62	Stem-Loop Recognition by DDX17 Facilitates miRNA Processing and Antiviral Defense. Cell, 2014, 158, 764-777.	13.5	103
63	The Interferon Signaling Antagonist Function of Yellow Fever Virus NS5 Protein Is Activated by Type I Interferon. Cell Host and Microbe, 2014, 16, 314-327.	5.1	126
64	Unanchored K48-Linked Polyubiquitin Synthesized by the E3-Ubiquitin Ligase TRIM6 Stimulates the Interferon-IKKε Kinase-Mediated Antiviral Response. Immunity, 2014, 40, 880-895.	6.6	135
65	MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies. Nature Biotechnology, 2013, 31, 844-847.	9.4	77
66	Influenza A Virus Utilizes Suboptimal Splicing to Coordinate the Timing of Infection. Cell Reports, 2013, 3, 23-29.	2.9	78
67	Is RNA Interference a Physiologically Relevant Innate Antiviral Immune Response in Mammals?. Cell Host and Microbe, 2013, 14, 374-378.	5.1	108
68	An InÂVivo RNAi Screening Approach to Identify Host Determinants of Virus Replication. Cell Host and Microbe, 2013, 14, 346-356.	5.1	39
69	RNA viruses and the host microRNA machinery. Nature Reviews Microbiology, 2013, 11, 169-180.	13.6	121
70	Replication in Cells of Hematopoietic Origin Is Necessary for Dengue Virus Dissemination. PLoS Pathogens, 2012, 8, e1002465.	2.1	86
71	In Vivo Delivery of Cytoplasmic RNA Virus-derived miRNAs. Molecular Therapy, 2012, 20, 367-375.	3.7	45
72	Degradation of Host MicroRNAs by Poxvirus Poly(A) Polymerase Reveals Terminal RNA Methylation as a Protective Antiviral Mechanism. Cell Host and Microbe, 2012, 12, 200-210.	5.1	94

#	Article	IF	Citations
73	A Small-RNA Enhancer of Viral Polymerase Activity. Journal of Virology, 2012, 86, 13475-13485.	1.5	53
74	Evidence for a cytoplasmic microprocessor of pri-miRNAs. Rna, 2012, 18, 1338-1346.	1.6	84
75	Hematopoietic-specific targeting of influenza A virus reveals replication requirements for induction of antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12117-12122.	3.3	66
76	Implications of RNA virus-produced miRNAs. RNA Biology, 2011, 8, 190-194.	1.5	23
77	ll°B kinase lµ (IKKlµ) regulates the balance between type I and type II interferon responses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21170-21175.	3.3	105
78	Noncanonical cytoplasmic processing of viral microRNAs. Rna, 2010, 16, 2068-2074.	1.6	99
79	Engineered RNA viral synthesis of microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11519-11524.	3.3	86
80	Antiviral Response Dictated by Choreographed Cascade of Transcription Factors. Journal of Immunology, 2010, 184, 2908-2917.	0.4	46
81	Transcription Factor Redundancy Ensures Induction of the Antiviral State. Journal of Biological Chemistry, 2010, 285, 42013-42022.	1.6	102
82	The IKK Kinases: Operators of Antiviral Signaling. Viruses, 2010, 2, 55-72.	1.5	22
83	Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11525-11530.	3.3	186
84	MicroRNA-mediated species-specific attenuation of influenza A virus. Nature Biotechnology, 2009, 27, 572-576.	9.4	135
85	MicroManipulating viral-based therapeutics. Discovery Medicine, 2009, 8, 51-4.	0.5	5
86	Multiple Functions of the IKK-Related Kinase IKKÂ in Interferon-Mediated Antiviral Immunity. Science, 2007, 315, 1274-1278.	6.0	309
87	Parallel Pathways of Virus Recognition. Immunity, 2006, 24, 510-512.	6.6	12
88	Regulation of arginase II by interferon regulatory factor 3 and the involvement of polyamines in the antiviral response. FEBS Journal, 2005, 272, 3120-3131.	2.2	34
89	Connecting Mitochondria and Innate Immunity. Cell, 2005, 122, 645-647.	13.5	96
90	Activation of TBK1 and IKKε Kinases by Vesicular Stomatitis Virus Infection and the Role of Viral Ribonucleoprotein in the Development of Interferon Antiviral Immunity. Journal of Virology, 2004, 78, 10636-10649.	1.5	164

#	Article	IF	Citations
91	Effects of the Hepatitis C Virus Core Protein on Innate Cellular Defense Pathways. Journal of Interferon and Cytokine Research, 2004, 24, 391-402.	0.5	41
92	Convergence of the NF-κB and Interferon Signaling Pathways in the Regulation of Antiviral Defense and Apoptosis. Annals of the New York Academy of Sciences, 2003, 1010, 237-248.	1.8	97
93	VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell, 2003, 4, 263-275.	7.7	734
94	Identification of the Minimal Phosphoacceptor Site Required for in Vivo Activation of Interferon Regulatory Factor 3 in Response to Virus and Double-stranded RNA. Journal of Biological Chemistry, 2003, 278, 9441-9447.	1.6	201
95	Triggering the Interferon Antiviral Response Through an IKK-Related Pathway. Science, 2003, 300, 1148-1151.	6.0	1,518
96	Transcriptional Profiling of Interferon Regulatory Factor 3 Target Genes: Direct Involvement in the Regulation of Interferon-Stimulated Genes. Journal of Virology, 2002, 76, 5532-5539.	1.5	467
97	Recognition of the Measles Virus Nucleocapsid as a Mechanism of IRF-3 Activation. Journal of Virology, 2002, 76, 3659-3669.	1.5	162
98	Review: Overlapping and Distinct Mechanisms Regulating IRF-3 and IRF-7 Function. Journal of Interferon and Cytokine Research, 2002, 22, 49-58.	0.5	80
99	Cardiometabolic syndrome — an emergent feature of Long COVID?. Nature Reviews Immunology, 0, , .	10.6	10
100	Pernio and Early SARSâ€CoVâ€2 Variants: Natural History of a Prospective Cohort and the Role of Interferon. British Journal of Dermatology, 0, , .	1.4	0