Guang-Zhi Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335943/publications.pdf

Version: 2024-02-01

214 papers 12,001 citations

62 h-index 97 g-index

215 all docs

215 docs citations

215 times ranked

12539 citing authors

#	Article	IF	CITATIONS
1	A highâ€performance transitionâ€metal phosphide electrocatalyst for converting solar energy into hydrogen at 19.6% STH efficiency. , 2023, 5, .		22
2	Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen. Applied Catalysis B: Environmental, 2022, 300, 120759.	10.8	78
3	Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties. Renewable Energy, 2022, 181, 1126-1139.	4.3	48
4	Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. Journal of Hazardous Materials, 2022, 424, 127319.	6.5	43
5	Efficient pH-universal degradation of antibiotic tetracycline via Co2P decorated Neosinocalamus affinis biochar. Chemosphere, 2022, 286, 131759.	4.2	27
6	Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery. Journal of Energy Chemistry, 2022, 66, 514-524.	7.1	69
7	Amorphous cobalt oxide decorated halloysite nanotubes for efficient sulfamethoxazole degradation activated by peroxymonosulfate. Journal of Colloid and Interface Science, 2022, 607, 857-868.	5.0	25
8	Separable lanthanum-based porous PAN nanofiber membrane for effective aqueous phosphate removal. Chemical Engineering Journal, 2022, 433, 133538.	6.6	20
9	Advances of the functionalized carbon nitrides for electrocatalysis. , 2022, 4, 211-236.		33
10	Increased crystallinity of RuSe ₂ /carbon nanotubes for enhanced electrochemical hydrogen generation performance. Nanoscale, 2022, 14, 790-796.	2.8	17
11	Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. Journal of Energy Chemistry, 2022, 69, 585-592.	7.1	77
12	Hydrothermal carbonization of cellulose in aqueous phase of bio-oil: The significant impacts on properties of hydrochar. Fuel, 2022, 315, 123132.	3.4	35
13	Pd nanocrystals embedded in BC2N for efficient electrochemical conversion of nitrate to ammonia. Applied Surface Science, 2022, 584, 152556.	3.1	18
14	The effect of graphene photocatalysis on microbial communities in Lake Xingyun, southwestern China. Environmental Science and Pollution Research, 2022, 29, 48851-48868.	2.7	3
15	Synthesis and application of silver and copper nanowires in high transparent solar cells. , 2022, 1, 100045.		11
16	Effects of volatiles on properties of char during sequential pyrolysis of PET and cellulose. Renewable Energy, 2022, 189, 139-151.	4.3	16
17	[CH3NH3][M(HCOO)3]-based 2D porous NiCo2S4 nanosheets for high-performance supercapacitors with high power densities. Chemical Engineering Journal, 2022, 437, 135337.	6.6	16
18	Artificial chloroplast-like phosphotungstic acid â€" iron oxide microbox heterojunctions penetrated by carbon nanotubes for solar photocatalytic degradation of tetracycline antibiotics in wastewater. Advanced Composites and Hybrid Materials, 2022, 5, 3158-3175.	9.9	35

#	Article	IF	CITATIONS
19	Atom-dispersed copper and nano-palladium in the boron-carbon-nitrogen matric cooperate to realize the efficient purification of nitrate wastewater and the electrochemical synthesis of ammonia. Journal of Hazardous Materials, 2022, 434, 128909.	6.5	21
20	Understanding evolution of the products and emissions during chemical activation of furfural residue with varied potassium salts. Journal of Cleaner Production, 2022, 357, 131936.	4.6	12
21	Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112538.	2.5	99
22	Impacts of temperature on hydrophilicity/functionalities of char and evolution of bio-oil/gas in pyrolysis of pig manure. Fuel, 2022, 323, 124330.	3.4	10
23	CO2 methanation over Ni/ZSM-5 catalysts: The effects of support morphology and La2O3 modification. Fuel, 2022, 324, 124679.	3.4	16
24	Simultaneously promoting charge and mass transports in carved particle-in-box nanoreactor for rechargeable Zn-air battery. Chemical Engineering Journal, 2022, 446, 137210.	6.6	22
25	Cu Nanoparticle-Decorated Boron–Carbon–Nitrogen Nanosheets for Electrochemical Determination of Chloramphenicol. ACS Applied Materials & Camp; Interfaces, 2022, 14, 28956-28964.	4.0	17
26	Influence of asphalt-derived volatiles on property of the biochar from pyrolysis of sawdust. Fuel Processing Technology, 2022, 234, 107343.	3.7	7
27	Nickel-induced charge redistribution in Ni-Fe/Fe3C@nitrogen-doped carbon nanocage as a robust Mott-Schottky bi-functional oxygen catalyst for rechargeable Zn-air battery. Journal of Colloid and Interface Science, 2022, 625, 521-531.	5.0	22
28	Amorphous Co@TiO2 heterojunctions: A high-performance and stable catalyst for the efficient degradation of sulfamethazine via peroxymonosulfate activation. Chemosphere, 2022, 307, 135681.	4.2	1
29	Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. Journal of Alloys and Compounds, 2022, 922, 166113.	2.8	66
30	Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature. Renewable and Sustainable Energy Reviews, 2021, 135, 110416.	8.2	103
31	Increasing Electrocatalytic Oxygen Evolution Efficiency through Cobaltâ€Induced Intrastructural Enhancement and Electronic Structure Modulation. ChemSusChem, 2021, 14, 467-478.	3.6	33
32	Efficient alcohol fuel oxidation catalyzed by a novel Pt/Se catalyst. Chemical Communications, 2021, 57, 199-202.	2.2	27
33	Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Research, 2021, 14, 1374-1381.	5.8	148
34	Application of DGT/DIFS to assess bioavailable Cd to maize and its release in agricultural soils. Journal of Hazardous Materials, 2021, 411, 124837.	6.5	19
35	Double functionalization strategy toward Co-Fe-P hollow nanocubes for highly efficient overall water splitting with ultra-low cell voltage. Chemical Engineering Journal, 2021, 405, 127002.	6.6	73
36	Progress of using biochar as a catalyst in thermal conversion of biomass. Reviews in Chemical Engineering, 2021, 37, 229-258.	2.3	26

#	Article	IF	Citations
37	Nitrogen dopant induced highly selective CO ₂ reduction over lotus-leaf shaped ZnO nanorods. Materials Chemistry Frontiers, 2021, 5, 4225-4230.	3.2	20
38	The janus in monodispersed catalysts: synergetic interactions. Journal of Materials Chemistry A, 2021, 9, 5276-5295.	5.2	7
39	Metalâ€Free Bifunctional Ordered Mesoporous Carbon for Reversible Zn O ₂ Batteries. Small Methods, 2021, 5, e2001039.	4.6	60
40	Copper confined in vesicle-like BCN cavities promotes electrochemical reduction of nitrate to ammonia in water. Journal of Materials Chemistry A, 2021, 9, 23675-23686.	5.2	42
41	In Situ Electrochemical Fabrication of Ultrasmall Ru-Based Nanoparticles for Robust N ₂ H ₄ Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 8488-8496.	4.0	7
42	Single atom catalyst for electrocatalysis. Chinese Chemical Letters, 2021, 32, 2947-2962.	4.8	43
43	Co-presence of hydrophilic and hydrophobic sites in Ni/biochar catalyst for enhancing the hydrogenation activity. Fuel, 2021, 293, 120426.	3.4	17
44	Engineered Polymeric Carbon Nitride Additive for Energy Storage Materials: A Review. Advanced Functional Materials, 2021, 31, 2102300.	7.8	26
45	Sequence of Ni/SiO2 and Cu/SiO2 in dual catalyst bed significantly impacts coke properties in glycerol steam reforming. International Journal of Hydrogen Energy, 2021, 46, 26367-26380.	3.8	13
46	3D Melamine Sponge-Derived Cobalt Nanoparticle-Embedded N-Doped Carbon Nanocages as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Omega, 2021, 6, 20130-20138.	1.6	1
47	Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. Advanced Materials, 2021, 33, e2007650.	11.1	229
48	Magnetically separable <scp>NiFe₂O₄</scp> / <scp>Ag₃VO₄</scp> / <scp>Ag_{2 direct <scp>Z</scp>â€scheme heterostructure with enhanced visibleâ€light photoactivity. Journal of Chemical Technology and Biotechnology, 2021, 96, 2976-2985.}</scp>	2V0 1.6) ₂
49	Pyrolysis of soybean residue: Understanding characteristics of the products. Renewable Energy, 2021, 174, 487-500.	4.3	17
50	Pyrolysis of flaxseed residue: Exploration of characteristics of the biochar and bio-oil products. Journal of the Energy Institute, 2021, 97, 1-12.	2.7	25
51	Co/MoC Nanoparticles Embedded in Carbon Nanoboxes as Robust Trifunctional Electrocatalysts for a Zn–Air Battery and Water Electrocatalysis. ACS Nano, 2021, 15, 13399-13414.	7.3	141
52	NiCo2O4 hollow microsphere–mediated ultrafast peroxymonosulfate activation for dye degradation. Chinese Chemical Letters, 2021, 32, 2495-2498.	4.8	23
53	CoFe2O4–CoFe microspheres for simultaneous electrochemical determination of trace lead(II) and cadmium(II) ions. Surfaces and Interfaces, 2021, 25, 101266.	1.5	9
54	PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. Journal of Energy Chemistry, 2021, 59, 748-754.	7.1	79

#	Article	IF	Citations
55	Mesopore-rich badam-shell biochar for efficient adsorption of Cr(VI) from aqueous solution. Journal of Environmental Chemical Engineering, 2021, 9, 105634.	3.3	36
56	Bifunctional heterostructured nitrogen and phosphorus co-doped carbon-layer-encapsulated Co2P electrocatalyst for efficient water splitting. Cell Reports Physical Science, 2021, 2, 100586.	2.8	13
57	Glycosyl/MOF-5-based carbon nanofibers for highly sensitive detection of anti-bacterial drug quercetin. Surfaces and Interfaces, 2021, 27, 101488.	1.5	11
58	Persistent radical pairs trigger nano-gold to highly efficiently and highly selectively drive the value-added conversion of nitroaromatics. Chem Catalysis, 2021, 1, 1118-1132.	2.9	10
59	Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies. Applied Catalysis B: Environmental, 2021, 297, 120486.	10.8	37
60	Two-dimensional BCN nanosheets self-assembled with hematite nanocrystals for sensitively detecting trace toxic Pb(II) ions in natural water. Ecotoxicology and Environmental Safety, 2021, 225, 112745.	2.9	14
61	Single-atom niobium doped BCN nanotubes for highly sensitive electrochemical detection of nitrobenzene. RSC Advances, 2021, 11, 28988-28995.	1.7	19
62	Rapid simultaneous removal of cationic dyes and Cr(<scp>vi</scp>) by boron cluster polyaniline with a target site. Chemical Communications, 2021, 57, 7569-7572.	2.2	8
63	Ethanol steam reforming over cobalt catalysts: Effect of a range of additives on the catalytic behaviors. Journal of the Energy Institute, 2020, 93, 165-184.	2.7	24
64	Impacts of La addition on formation of the reaction intermediates over alumina and silica supported nickel catalysts in methanation of CO2. Journal of the Energy Institute, 2020, 93, 723-738.	2.7	27
65	Steam reforming of typical small organics derived from bio-oil: Correlation of their reaction behaviors with molecular structures. Fuel, 2020, 259, 116214.	3.4	30
66	Steam reforming of acetic acid over nickel catalysts: Impacts of fourteen additives on the catalytic behaviors. Journal of the Energy Institute, 2020, 93, 1000-1019.	2.7	19
67	Oxygen Reduction Reactions on Single―or Fewâ€Atom Discrete Active Sites for Heterogeneous Catalysis. Advanced Energy Materials, 2020, 10, 1902084.	10.2	82
68	Steam reforming of acetic acid over Ni–Ba/Al2O3 catalysts: Impacts of barium addition on coking behaviors and formation of reaction intermediates. Journal of Energy Chemistry, 2020, 43, 208-219.	7.1	38
69	Impacts of temperature on evolution of char structure during pyrolysis of lignin. Science of the Total Environment, 2020, 699, 134381.	3.9	52
70	Soft-templated mesoporous carbon-modified glassy carbon electrode for sensitive and selective detection of aristolochic acids. Journal of Hazardous Materials, 2020, 385, 121550.	6.5	18
71	Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates. Fuel, 2020, 262, 116521.	3.4	59
72	Selective conversion of furfural into value-added chemical commodity in successive fixed-bed reactors. Catalysis Communications, 2020, 135, 105836.	1.6	12

#	Article	IF	CITATIONS
73	Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Metals, 2020, 39, 824-833.	3.6	45
74	Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid. Journal of Energy Chemistry, 2020, 47, 166-171.	7.1	104
75	Ni–Co bimetallic coordination effect for long lifetime rechargeable Zn–air battery. Journal of Energy Chemistry, 2020, 47, 146-154.	7.1	50
76	Silica of varied pore sizes as supports of copper catalysts for hydrogenation of furfural and phenolics: Impacts of steric hindrance. International Journal of Hydrogen Energy, 2020, 45, 2720-2728.	3.8	9
77	Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN ₄ for Ultraefficient Oxygen Reduction Reaction in Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2020, 59, 2688-2694.	7.2	355
78	Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN ₄ for Ultraefficient Oxygen Reduction Reaction in Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2020, 132, 2710-2716.	1.6	36
79	Methanation of CO2 over alumina supported nickel or cobalt catalysts: Effects of the coordination between metal and support on formation of the reaction intermediates. International Journal of Hydrogen Energy, 2020, 45, 531-543.	3.8	55
80	Electrochemical determination of chloramphenicol and metronidazole by using a glassy carbon electrode modified with iron, nitrogen co-doped nanoporous carbon derived from a metal-organic framework (type Fe/ZIF-8). Ecotoxicology and Environmental Safety, 2020, 204, 111066.	2.9	58
81	Electrochemical Determination of Metronidazole Using a Glassy Carbon Electrode Modified with Nanoporous Bimetallic Carbon Derived from a ZnCo-Based Metal-Organic Framework. Journal of the Electrochemical Society, 2020, 167, 116513.	1.3	26
82	Sulfated attapulgite for catalyzing the conversion of furfuryl alcohol to ethyl levulinate: Impacts of sulfonation on structural transformation and evolution of acidic sites on the catalyst. Renewable Energy, 2020, 162, 1576-1586.	4.3	16
83	Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution. Waste Management, 2020, 116, 9-21.	3.7	46
84	Pyrolysis of saw dust with co-feeding of methanol. Renewable Energy, 2020, 160, 1023-1035.	4.3	18
85	Mesoporous Ce-Zr solid solutions supported Ni-based catalysts for low-temperature CO2 methanation by tuning the reaction intermediates. Fuel, 2020, 282, 118813.	3.4	28
86	Progress of the applications of bio-oil. Renewable and Sustainable Energy Reviews, 2020, 134, 110124.	8.2	154
87	Progress of the development of reactors for pyrolysis of municipal waste. Sustainable Energy and Fuels, 2020, 4, 5885-5915.	2.5	32
88	Pyrolysis of herb waste: Effects of extraction pretreatment on characteristics of bio-oil and biochar. Biomass and Bioenergy, 2020, 143, 105801.	2.9	13
89	Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO2 Reforming of Methane. Frontiers in Chemistry, 2020, 8, 581923.	1.8	16
90	Mimicking Hydrazine Dehydrogenase for Efficient Electrocatalytic Oxidation of N ₂ H ₄ by Fe–NC. ACS Applied Materials & amp; Interfaces, 2020, 12, 38183-38191.	4.0	13

#	Article	IF	Citations
91	Sustainability Perspective-Oriented Synthetic Strategy for Zinc Single-Atom Catalysts Boosting Electrocatalytic Reduction of Carbon Dioxide and Oxygen. ACS Sustainable Chemistry and Engineering, 2020, 8, 13813-13822.	3.2	35
92	Inside Front Cover: Rh ₂ S ₃ /Nâ€Doped Carbon Hybrids as pHâ€Universal Bifunctional Electrocatalysts for Energyâ€Saving Hydrogen Evolution (Small Methods 9/2020). Small Methods, 2020, 4, 2070035.	4.6	0
93	Engineering Atomic Sites via Adjacent Dualâ€Metal Subâ€Nanoclusters for Efficient Oxygen Reduction Reaction and Znâ€Air Battery. Small, 2020, 16, e2004855.	5.2	53
94	Synergistically boosting the oxygen evolution reaction of an Fe-MOF <i>via</i> Ni doping and fluorination. Chemical Communications, 2020, 56, 7889-7892.	2.2	56
95	Evolution of the functional groups/structures of biochar and heteroatoms during the pyrolysis of seaweed. Algal Research, 2020, 48, 101900.	2.4	43
96	Coke Formation during Thermal Treatment of Bio-oil. Energy & Samp; Fuels, 2020, 34, 7863-7914.	2.5	123
97	Mesoporous PdAg Nanospheres for Stable Electrochemical CO ₂ Reduction to Formate. Advanced Materials, 2020, 32, e2000992.	11.1	153
98	Impacts of metal loading in Ni/attapulgite on distribution of the alkalinity sites and reaction intermediates in CO2 methanation reaction. International Journal of Hydrogen Energy, 2020, 45, 16153-16160.	3.8	10
99	Isolated single-atom Pt sites for highly selective electrocatalytic hydrogenation of formaldehyde to methanol. Journal of Materials Chemistry A, 2020, 8, 8913-8919.	5.2	33
100	Production of bio-fuel from plant oil asphalt via pyrolysis. Journal of the Energy Institute, 2020, 93, 1763-1772.	2.7	8
101	Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range. Bioresource Technology, 2020, 304, 123002.	4.8	104
102	Overall water-splitting reaction efficiently catalyzed by a novel bi-functional Ru/Ni ₃ N–Ni electrode. Chemical Communications, 2020, 56, 2352-2355.	2.2	71
103	The loss of ZnO as the support for metal catalysts by H ₂ reduction. Physical Chemistry Chemical Physics, 2020, 22, 3953-3958.	1.3	8
104	Recent Progresses in Constructing the Highly Efficient Ni Based Catalysts With Advanced Low-Temperature Activity Toward CO2 Methanation. Frontiers in Chemistry, 2020, 8, 269.	1.8	85
105	Pyrolysis of cellulose with co-feeding of formic or acetic acid. Cellulose, 2020, 27, 4909-4929.	2.4	9
106	Dynamic co-catalysis of Au single atoms and nanoporous Au for methane pyrolysis. Nature Communications, 2020, $11,1919$.	5.8	65
107	Rh ₂ S ₃ /Nâ€Doped Carbon Hybrids as pHâ€Universal Bifunctional Electrocatalysts for Energyâ€Saving Hydrogen Evolution. Small Methods, 2020, 4, 2000208.	4.6	45
108	Steam reforming of guaiacol over Ni/SiO2 catalyst modified with basic oxides: Impacts of alkalinity on properties of coke. Energy Conversion and Management, 2020, 205, 112301.	4.4	40

#	Article	IF	Citations
109	Ru Nanoclusters Coupled on Co/N-Doped Carbon Nanotubes Efficiently Catalyzed the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9136-9144.	3.2	86
110	A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses. Renewable and Sustainable Energy Reviews, 2019, 114, 109313.	8.2	83
111	N, S, P-Triple Doped Porous Carbon as an Improved Electrochemical Sensor for Metronidazole Determination. Journal of the Electrochemical Society, 2019, 166, B1131-B1137.	1.3	18
112	Boosting hydrogen evolution activity of vanadyl pyrophosphate nanosheets for electrocatalytic overall water splitting. Chemical Communications, 2019, 55, 10511-10514.	2.2	22
113	Differential pulse voltammetry detection of Pb(<scp>ii</scp>) using nitrogen-doped activated nanoporous carbon from almond shells. RSC Advances, 2019, 9, 23678-23685.	1.7	18
114	Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to \hat{l}^3 -valerolactone or 1,4-pentanediol. Green Chemistry, 2019, 21, 4499-4511.	4.6	123
115	Design of graphene oxide by a oneâ€pot synthetic route for catalytic conversion of furfural alcohol to ethyl levulinate. Journal of Chemical Technology and Biotechnology, 2019, 94, 3093-3101.	1.6	14
116	Study of the properties and mechanism of deep reduction and efficient adsorption of Cr(VI) by low-cost Fe3O4-modified ceramsite. Science of the Total Environment, 2019, 688, 994-1004.	3.9	61
117	Mn-doped Co3O4 nanoarrays as a promising electrocatalyst for oxygen evolution reaction. Materials Research Express, 2019, 6, 115033.	0.8	11
118	Cross-interaction during Co-gasification of wood, weed, plastic, tire and carton. Journal of Environmental Management, 2019, 250, 109467.	3.8	38
119	Effects of Al–3Ti–3B–1Y master alloy on the microstructure, mechanical properties and electrical properties of Al–9Si–0.5Mg casting alloy. Materials Research Express, 2019, 6, 126523.	0.8	3
120	Simultaneous Determination of Dopamine and Uric Acid using Glassy Carbon Electrode Modified with Almond-Shell-Based Nanoporous Carbon. Journal of the Electrochemical Society, 2019, 166, B1171-B1178.	1.3	17
121	Rapid Microwave-Assisted Synthesis of Copper Decorated Carbon Black Nanocomposite for Non-Enzyme Glucose Sensing in Human Blood. Journal of the Electrochemical Society, 2019, 166, B1238-B1244.	1.3	15
122	Recent Developments in Polymeric Carbon Nitride-Derived Photocatalysts and Electrocatalysts for Nitrogen Fixation. ACS Catalysis, 2019, 9, 10260-10278.	5.5	116
123	High yields of solid carbonaceous materials from biomass. Green Chemistry, 2019, 21, 1128-1140.	4.6	103
124	Designing and Fabricating Ordered Mesoporous Metal Oxides for CO2 Catalytic Conversion: A Review and Prospect. Materials, 2019, 12, 276.	1.3	29
125	Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry. Sustainable Energy and Fuels, 2019, 3, 611-655.	2.5	47
126	Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 2019, 39, 109-143.	7.1	412

#	Article	IF	CITATIONS
127	Taraxacum-like Mg-Al-Si@porous carbon nanoclusters for electrochemical rutin detection. Mikrochimica Acta, 2019, 186, 379.	2.5	29
128	Methanation of CO2: Impacts of modifying nickel catalysts with variable-valence additives on reaction mechanism. Fuel, 2019, 254, 115654.	3 . 4	46
129	Nanocrystal supracrystal-derived atomically dispersed Mn-Fe catalysts with enhanced oxygen reduction activity. Nano Energy, 2019, 63, 103851.	8.2	85
130	Double-shelled yolk-shell Si@C microspheres based electrochemical sensor for determination of cadmium and lead ions. Analytica Chimica Acta, 2019, 1078, 32-41.	2.6	24
131	Nitrogen-Doped Carbon Nanotube–Graphene Frameworks with Encapsulated Fe/Fe ₃ N Nanoparticles as Catalysts for Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 3538-3547.	2.4	53
132	Glassy Carbon Electrode Modified via Molybdenum Disulfide Decorated Multiwalled Carbon Nanotubes for Sensitive Voltammetric Detection of Aristolochic Acids. Electroanalysis, 2019, 31, 1390-1400.	1.5	7
133	Understanding correlation of the interaction between nickel and alumina with the catalytic behaviors in steam reforming and methanation. Fuel, 2019, 250, 176-193.	3.4	56
134	Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15: Impacts of support on catalytic behaviors of nickel and properties of coke. Fuel Processing Technology, 2019, 191, 138-151.	3.7	78
135	Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity. International Journal of Hydrogen Energy, 2019, 44, 8197-8213.	3.8	99
136	Impacts of nickel loading on properties, catalytic behaviors of Ni/γ–Al2O3 catalysts and the reaction intermediates formed in methanation of CO2. International Journal of Hydrogen Energy, 2019, 44, 9291-9306.	3.8	116
137	Structural differences of the soluble oligomers and insoluble polymers from acid-catalyzed conversion of sugars with varied structures. Carbohydrate Polymers, 2019, 216, 167-179.	5.1	23
138	Fe ₂ P@mesoporous carbon nanosheets synthesized <i>via</i> an organic template method as a cathode electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 11321-11330.	5. 2	54
139	Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors with physiochemical properties of the oxides. Biomass and Bioenergy, 2019, 124, 125-141.	2.9	82
140	Pyrolysis of different wood species: Impacts of C/H ratio in feedstock on distribution of pyrolysis products. Biomass and Bioenergy, 2019, 120, 28-39.	2.9	81
141	Formulation of Al–Bi–Sn immiscible alloys versus the solidification behaviors and structures. Journal of Materials Science, 2019, 54, 4384-4399.	1.7	7
142	Hydrothermal liquefaction of cellulose in ammonia/water. Bioresource Technology, 2019, 278, 311-317.	4.8	60
143	Direct conversion of furfural to levulinic acid/ester in dimethoxymethane: Understanding the mechanism for polymerization. Green Energy and Environment, 2019, 4, 400-413.	4.7	73
144	Ultrasmall Abundant Metal-Based Clusters as Oxygen-Evolving Catalysts. Journal of the American Chemical Society, 2019, 141, 232-239.	6.6	56

#	Article	IF	Citations
145	Rationally Designed Copperâ€Modified Polymeric Carbon Nitride as a Photocathode for Solar Water Splitting. ChemSusChem, 2019, 12, 866-872.	3.6	26
146	Direct conversion of furan into levulinate esters via acid catalysis. Fuel, 2019, 237, 263-275.	3.4	24
147	Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries. Energy Storage Materials, 2019, 18, 165-173.	9.5	155
148	Novel Low-Toxic Derivative of Celastrol Maintains Protective Effect against Acute Renal Injury. ACS Omega, 2018, 3, 2652-2660.	1.6	17
149	Facile high-voltage sputtering synthesis of three-dimensional hierarchical porous nitrogen-doped carbon coated Si composite for high performance lithium-ion batteries. Chemical Engineering Journal, 2018, 343, 78-85.	6.6	61
150	Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys. Physica B: Condensed Matter, 2018, 537, 58-62.	1.3	7
151	Hydrogenation of fourteen biomass-derived phenolics in water and in methanol: their distinct reaction behaviours. Sustainable Energy and Fuels, 2018, 2, 751-758.	2.5	22
152	Liquid phase transition of Sn50Bi50 hypereutectic alloy and its thermodynamic and kinetic aspects. Journal of Molecular Liquids, 2018, 251, 185-189.	2.3	13
153	Steam reforming of acetic acid over Ni/Al2O3 catalysts: Correlation of nickel loading with properties and catalytic behaviors of the catalysts. Fuel, 2018, 217, 389-403.	3.4	95
154	Nâ€Doped Hollow Porous Carbon Spheres/Bismuth Hybrid Film Modified Electrodes for Sensitive Voltammetric Determination of Trace Cadmium. Electroanalysis, 2018, 30, 1906-1912.	1.5	9
155	Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers. Mikrochimica Acta, 2018, 185, 282.	2.5	23
156	Steam reforming of acetic acid over Ni/Al2O3 catalyst: Correlation of calcination temperature with the interaction of nickel and alumina. Fuel, 2018, 227, 307-324.	3.4	51
157	Liquid-liquid structure transition and its effect on the solidification behaviors and microstructure of Sn75Bi25 alloy. Journal of Molecular Liquids, 2018, 263, 218-227.	2.3	18
158	Steam reforming of carboxylic acids for hydrogen generation: Effects of aliphatic chain of the acids on their reaction behaviors. Molecular Catalysis, 2018, 450, 1-13.	1.0	23
159	Compositional Evaluation of Coreduced Fe–Pt Metal Acetylacetonates as PEM Fuel Cell Cathode Catalyst. ACS Applied Energy Materials, 2018, 1, 7106-7115.	2.5	9
160	Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation. Journal of Power Sources, 2018, 403, 137-156.	4.0	75
161	Investigation of pathways for transformation of Nâ€'heterocycle compounds during sewage sludge pyrolysis process. Fuel Processing Technology, 2018, 182, 37-44.	3.7	81
162	Self-powered H2 production with bifunctional hydrazine as sole consumable. Nature Communications, 2018, 9, 4365.	5.8	178

#	Article	IF	CITATIONS
163	An Electrochemical Sensor Based on Green \hat{I}^3 -AlOOH-Carbonated Bacterial Cellulose Hybrids for Simultaneous Determination Trace Levels of Cd(II) and Pb(II) in Drinking Water. Journal of the Electrochemical Society, 2018, 165, B328-B334.	1.3	22
164	A Facile Electrochemical Sensor Based on PyTS–CNTs for Simultaneous Determination of Cadmium and Lead Ions. Sensors, 2018, 18, 1567.	2.1	35
165	Nonenzymatic Glucose Biosensor Based on NiNPs/Nafion/Graphene Film for Direct Glucose Determination in Human Serum. Nano, 2018, 13, 1850075.	0.5	5
166	Assemblage of Perovskite LaNiO∢sub>3∢/sub> Connected With In Situ Grown Nitrogenâ€Doped Carbon Nanotubes as Highâ€Performance Electrocatalyst for Oxygen Evolution Reaction. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800380.	0.8	20
167	Atomically Dispersed Fe, N Co-Doped Ordered Mesoporous Carbon for Non-Enzymatic Hydrogen Peroxide Sensing. Journal of the Electrochemical Society, 2018, 165, H348-H352.	1.3	12
168	Pyrolysis of poplar, cellulose and lignin: Effects of acidity and alkalinity of the metal oxide catalysts. Journal of Analytical and Applied Pyrolysis, 2018, 134, 590-605.	2.6	97
169	Polysulfide/Graphene Nanocomposite Film for Simultaneous Electrochemical Determination of Cadmium and Lead Ions. Nano, 2018, 13, 1850090.	0.5	7
170	Synthesis of an iron-nitrogen co-doped ordered mesoporous carbon-silicon nanocomposite as an enhanced electrochemical sensor for sensitive and selective determination of chloramphenicol. Colloids and Surfaces B: Biointerfaces, 2018, 172, 98-104.	2.5	37
171	Steam reforming of acetic acid over nickel-based catalysts: The intrinsic effects of nickel precursors on behaviors of nickel catalysts. Applied Catalysis B: Environmental, 2018, 237, 538-553.	10.8	90
172	Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction. Nano Letters, 2017, 17, 2003-2009.	4.5	168
173	<i>N</i> , <i>N</i> -Dimethyl Tertiary Amino Group Mediated Dual Pancreas- and Lung-Targeting Therapy against Acute Pancreatitis. Molecular Pharmaceutics, 2017, 14, 1771-1781.	2.3	16
174	Three-dimensional carbon nanofiber derived from bacterial cellulose for use in a Nafion matrix on a glassy carbon electrode for simultaneous voltammetric determination of trace levels of Cd(II) and Pb(II). Mikrochimica Acta, 2017, 184, 2759-2766.	2.5	25
175	Microwave-assisted synthesis of multimetal oxygen-evolving catalysts. Electrochemistry Communications, 2017, 81, 116-119.	2.3	15
176	Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy, 2017, 35, 9-16.	8.2	289
177	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie, 2017, 129, 13988-13992.	1.6	88
178	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie - International Edition, 2017, 56, 13800-13804.	7.2	409
179	Protic salt-based nitrogen-doped mesoporous carbon for simultaneous electrochemical detection of Cd(ii) and Pb(ii). RSC Advances, 2017, 7, 36929-36934.	1.7	4
180	Upgrading of bio-oil via acid-catalyzed reactions in alcohols $\hat{a} \in \text{``A mini review. Fuel Processing Technology, 2017, 155, 2-19.}$	3.7	95

#	Article	IF	Citations
181	Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor. Fuel Processing Technology, 2016, 148, 175-183.	3.7	77
182	Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature. Applied Energy, 2016, 183, 542-551.	5.1	16
183	Nitrogen, Sulfur Dual-Doped Mesoporous Carbon Modified Glassy Carbon Electrode for Simultaneous Determination of Hydroquinone and Catechol. Journal of the Electrochemical Society, 2016, 163, B617-B623.	1.3	27
184	An efficient electrochemical sensor based on three-dimensionally interconnected mesoporous graphene framework for simultaneous determination of Cd(II) and Pb(II). Electrochimica Acta, 2016, 222, 1371-1377.	2.6	60
185	In situ Magnesiothermal Synthesis of Mesoporous MgO/OMC Composite for Sensitive Detection of Lead Ions. Electroanalysis, 2016, 28, 2939-2946.	1.5	7
186	Facile one-pot synthesis and application of nitrogen and sulfur-doped activated graphene in simultaneous electrochemical determination of hydroquinone and catechol. Analyst, The, 2016, 141, 5555-5562.	1.7	45
187	Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Mikrochimica Acta, 2016, 183, 723-729.	2.5	72
188	Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt ₃ Coâ€"Pt coreâ€"shell nanoparticles. Catalysis Science and Technology, 2016, 6, 1393-1401.	2.1	17
189	One-step synthesis of isoreticular metal–organic framework-8 derived hierarchical porous carbon and its application in differential pulse anodic stripping voltammetric determination of Pb(<scp>ii</scp>). RSC Advances, 2015, 5, 77159-77167.	1.7	33
190	Direct support mixture painting, using Pd(0) organo-metallic compounds \hat{a} an easy and environmentally sound approach to combine decoration and electrode preparation for fuel cells. Journal of Materials Chemistry A, 2014, 2, 20973-20979.	5.2	3
191	Effects of volatile–char interactions on in situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part I. Roles of nascent char. Fuel, 2014, 122, 60-66.	3.4	91
192	Quantification of strong and weak acidities in bio-oil via non-aqueous potentiometric titration. Fuel, 2014, 115, 652-657.	3.4	28
193	Small palladium islands embedded in palladium–tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction. Nature Communications, 2014, 5, 5253.	5.8	77
194	Polymerization on heating up of bioâ€oil: A model compound study. AICHE Journal, 2013, 59, 888-900.	1.8	150
195	Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic \hat{I}^3 -Fe2O3 nanoparticles. Nature Communications, 2013, 4, 2319.	5.8	135
196	Effects of temperature on the yields and properties of bio-oil from the fast pyrolysis of mallee bark. Fuel, 2013, 108, 400-408.	3.4	68
197	Investigation of deactivation mechanisms of a solid acid catalyst during esterification of the bio-oils from mallee biomass. Applied Energy, 2013, 111, 94-103.	5.1	51
198	Controlled Synthesis of CeO ₂ /Graphene Nanocomposites with Highly Enhanced Optical and Catalytic Properties. Journal of Physical Chemistry C, 2012, 116, 11741-11745.	1.5	198

#	Article	IF	CITATIONS
199	Mediating acid-catalyzed conversion of levoglucosan into platform chemicals with various solvents. Green Chemistry, 2012, 14, 3087.	4.6	74
200	Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2012, 6, 8904-8912.	7.3	544
201	Self-assembled palladium nanocrystals on helical carbon nanofibers as enhanced electrocatalysts for electro-oxidation of small molecules. Journal of Materials Chemistry, 2012, 22, 8541.	6.7	79
202	Acid-catalysed reactions between methanol and the bio-oil from the fast pyrolysis of mallee bark. Fuel, 2012, 97, 512-522.	3.4	70
203	Pruning of the surface species on Ni/Al2O3 catalyst to selective production of hydrogen via acetone and acetic acid steam reforming. Applied Catalysis A: General, 2012, 427-428, 49-57.	2.2	58
204	Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery. Green Chemistry, 2011, 13, 1676.	4.6	200
205	Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO2 emission. International Journal of Hydrogen Energy, 2010, 35, 7169-7176.	3.8	67
206	Comparative study of alumina-supported transition metal catalysts for hydrogen generation by steam reforming of acetic acid. Applied Catalysis B: Environmental, 2010, 99, 289-297.	10.8	131
207	Simultaneous Determination of Dopamine and Ascorbic Acid Using the Nanoâ€Gold Selfâ€Assembled Glassy Carbon Electrode. Electroanalysis, 2009, 21, 1200-1206.	1.5	31
208	Selective determination of uric acid in the presence of ascorbic acid at poly(p-aminobenzene sulfonic) Tj ETQq0 (0 0 rgBT /0	Overlock 10 T
209	Investigation of the steam reforming of a series of model compounds derived from bio-oil for hydrogen production. Applied Catalysis B: Environmental, 2009, 88, 376-385.	10.8	157
210	Ultrasensitive electrochemical sensing of the anticancer drug tirapazamine using an ordered mesoporous carbon modified pyrolytic graphite electrode. Biosensors and Bioelectronics, 2009, 24, 3391-3394.	5.3	26
211	Selective electrochemical sensing of calcium dobesilate based on the nano-Pd/CNTs modified pyrolytic graphite electrode. Talanta, 2009, 78, 1211-1214.	2.9	10
212	Investigation of steam reforming of acetic acid to hydrogen over Ni–Co metal catalyst. Journal of Molecular Catalysis A, 2007, 261, 43-48.	4.8	155
213	Steam Reforming of Acetic Acid to Hydrogen over Fe–Co Catalyst. Chemistry Letters, 2006, 35, 452-453.	0.7	37
214	Phosphorus and Selenium Coâ€Doped WO ₃ Nanoparticles for Interface Modification and Photovoltaic Properties Enhancement of Monolayer Planar Silicon/PEDOT:PSS Hybrid Solar Cells. Advanced Materials Interfaces, 0, , 2200812.	1.9	2