Minghui Diao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335852/publications.pdf

Version: 2024-02-01

623734 552781 2,038 27 14 26 citations g-index h-index papers 40 40 40 3470 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of thermodynamics, dynamics and aerosols on cirrus clouds based on in situ observations and NCAR CAM6. Atmospheric Chemistry and Physics, 2021, 21, 1835-1859.	4.9	12
2	A multi-analysis approach for estimating regional health impacts from the 2017 Northern California wildfires. Journal of the Air and Waste Management Association, 2021, 71, 791-814.	1.9	25
3	Satellite Monitoring for Air Quality and Health. Annual Review of Biomedical Data Science, 2021, 4, 417-447.	6.5	25
4	Evaluation of the CAM6 Climate Model Using Cloud Observations at McMurdo Station, Antarctica. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034653.	3.3	5
5	The University of Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning. Atmospheric Measurement Techniques, 2021, 14, 7079-7101.	3.1	6
6	Ice and Supercooled Liquid Water Distributions Over the Southern Ocean Based on In Situ Observations and Climate Model Simulations. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	9
7	Measured Constraints on Cloud Top Entrainment to Reduce Uncertainty of Nonprecipitating Stratocumulus Shortwave Radiative Forcing in the Southern Ocean. Geophysical Research Letters, 2020, 47, e2020GL090513.	4.0	3
8	Aerosol Indirect Effects on Cirrus Clouds Based on Global Aircraft Observations. Geophysical Research Letters, 2020, 47, e2019GL086550.	4.0	9
9	Methods, availability, and applications of PM _{2.5} exposure estimates derived from ground measurements, satellite, and atmospheric models. Journal of the Air and Waste Management Association, 2019, 69, 1391-1414.	1.9	73
10	Cloud Phase and Relative Humidity Distributions over the Southern Ocean in Austral Summer Based on In Situ Observations and CAM5 Simulations. Journal of Climate, 2019, 32, 2781-2805.	3.2	30
11	Impacts of Representing Heterogeneous Distribution of Cloud Liquid and Ice on Phase Partitioning of Arctic Mixedâ€Phase Clouds with NCAR CAM5. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13071-13090.	3.3	24
12	The O2/N2 Ratio and CO2 Airborne Southern Ocean Study. Bulletin of the American Meteorological Society, 2018, 99, 381-402.	3.3	28
13	Ice Nucleation Parameterization and Relative Humidity Distribution in Idealized Squall-Line Simulations. Journals of the Atmospheric Sciences, 2017, 74, 2761-2787.	1.7	9
14	Dynamical conditions of ice supersaturation and ice nucleation in convective systems: A comparative analysis between in situ aircraft observations and WRF simulations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2844-2866.	3.3	9
15	Direct comparisons of ice cloud macro- and microphysical properties simulated by the Community Atmosphere Model version 5 with HIPPO aircraft observations. Atmospheric Chemistry and Physics, 2017, 17, 4731-4749.	4.9	13
16	An assessment of the radiative effects of ice supersaturation based on in situ observations. Geophysical Research Letters, 2016, 43, 11,039.	4.0	8
17	Distributions of ice supersaturation and ice crystals from airborne observations in relation to upper tropospheric dynamical boundaries. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5101-5121.	3.3	15
18	Hemispheric comparison of cirrus cloud evolution using in situ measurements in HIAPER Pole-to-Pole Observations. Geophysical Research Letters, 2014, 41, 4090-4099.	4.0	13

#	Article	IF	CITATION
19	Cloud-scale ice-supersaturated regions spatially correlate with high water vapor heterogeneities. Atmospheric Chemistry and Physics, 2014, 14, 2639-2656.	4.9	23
20	Cirrus cloud formation and the role of heterogeneous ice nuclei. , 2013, , .		3
21	Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science, 2013, 340, 1320-1324.	12.6	442
22	Evolution of ice crystal regions on the microscale based on in situ observations. Geophysical Research Letters, 2013, 40, 3473-3478.	4.0	23
23	Validation of AIRS/AMSUâ€A water vapor and temperature data with in situ aircraft observations from the surface to UT/LS from 87°N–67°S. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6816-6836.	3.3	25
24	Atmospheric observations of Arctic Ocean methane emissions up to 82° north. Nature Geoscience, 2012, 5, 318-321.	12.9	124
25	HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2073-2086.	3.4	351
26	Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmospheric Measurement Techniques, 2010, 3, 1351-1362.	3.1	441
27	Use of zero-valent iron nanoparticles in inactivating microbes. Water Research, 2009, 43, 5243-5251.	11.3	289