Magali Cucchiarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127. Tissue Engineering - Part B: Reviews, 2022, 28, 451-463.	4.8	24
2	Pluronic F127/Doxorubicin microemulsions: Preparation, characterization, and toxicity evaluations. Journal of Molecular Liquids, 2022, 345, 117028.	4.9	37
3	Potential Gene Therapy Options for Early OA. , 2022, , 321-337.		0
4	Axial alignment is a critical regulator of knee osteoarthritis. Science Translational Medicine, 2022, 14, eabn0179.	12.4	7
5	Mitochondrial Genome Editing to Treat Human Osteoarthritis—A Narrative Review. International Journal of Molecular Sciences, 2022, 23, 1467.	4.1	8
6	Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. International Journal of Molecular Sciences, 2022, 23, 1147.	4.1	39
7	The effect of pNaSS grafting of knitted poly(Î μ -caprolactone) artificial ligaments on in vitro mineralization and in vivo osseointegration. Materialia, 2022, 21, 101331.	2.7	3
8	A highâ€resolution crossâ€species comparative analysis of the subchondral bone provides insight into critical topographical patterns of the osteochondral unit. Clinical and Translational Medicine, 2022, 12, e745.	4.0	2
9	Quantifying the Human Subchondral Trabecular Bone Microstructure in Osteoarthritis with Clinical CT. Advanced Science, 2022, 9, .	11.2	10
10	Joint Cartilage in Long-Duration Spaceflight. Biomedicines, 2022, 10, 1356.	3.2	3
11	Subchondral Drilling Independent of Drill Hole Number Improves Articular Cartilage Repair and Reduces Subchondral Bone Alterations Compared With Debridement in Adult Sheep. American Journal of Sports Medicine, 2022, 50, 2669-2679.	4.2	3
12	Single-cell RNA-seq reveals novel mitochondria-related musculoskeletal cell populations during adult axolotl limb regeneration process. Cell Death and Differentiation, 2021, 28, 1110-1125.	11.2	26
13	Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part II: Small animals. Annals of Anatomy, 2021, 234, 151630.	1.9	16
14	Nanomaterials for the Diagnosis and Treatment of Urinary Tract Infections. Nanomaterials, 2021, 11, 546.	4.1	32
15	rAAV-Mediated Human FGF-2 Gene Therapy Enhances Osteochondral Repair in a Clinically Relevant Large Animal Model Over Time In Vivo. American Journal of Sports Medicine, 2021, 49, 958-969.	4.2	15
16	Vitamin D Receptor and Vitamin D Binding Protein Gene Polymorphisms Are Associated with Renal Allograft Outcome. Nutrients, 2021, 13, 1101.	4.1	1
17	Nanodiagnosis and Nanotreatment of Cardiovascular Diseases: An Overview. Chemosensors, 2021, 9, 67.	3.6	24
18	Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. Biosensors, 2021, 11, 97.	4.7	49

MAGALI CUCCHIARINI

#	Article	IF	CITATIONS
19	Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. International Journal of Molecular Sciences, 2021, 22, 3092.	4.1	30
20	Hydrogelâ€Guided, rAAVâ€Mediated IGFâ€I Overexpression Enables Longâ€Term Cartilage Repair and Protection against Perifocal Osteoarthritis in a Largeâ€Animal Fullâ€Thickness Chondral Defect Model at One Year In Vivo. Advanced Materials, 2021, 33, e2008451.	21.0	47
21	Biomaterial-assisted gene therapy for translational approaches to treat musculoskeletal disorders. Materials Today Advances, 2021, 9, 100126.	5.2	4
22	ls Extracellular Vesicle-Based Therapy the Next Answer for Cartilage Regeneration?. Frontiers in Bioengineering and Biotechnology, 2021, 9, 645039.	4.1	16
23	Nanotechnology in Bladder Cancer: Diagnosis and Treatment. Cancers, 2021, 13, 2214.	3.7	56
24	Application of Nanotechnology for Sensitive Detection of Low-Abundance Single-Nucleotide Variations in Genomic DNA: A Review. Nanomaterials, 2021, 11, 1384.	4.1	27
25	Tissue Regeneration through Cyberâ€Physical Systems and Microbots. Advanced Functional Materials, 2021, 31, 2009663.	14.9	9
26	The Potential Application of Magnetic Nanoparticles for Liver Fibrosis Theranostics. Frontiers in Chemistry, 2021, 9, 674786.	3.6	22
27	Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arabian Journal of Chemistry, 2021, 14, 103106.	4.9	64
28	DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers, 2021, 13, 3396.	3.7	46
29	Natural and Synthetic Bioinks for 3D Bioprinting. Advanced NanoBiomed Research, 2021, 1, 2000097.	3.6	60
30	A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights. Composites Part B: Engineering, 2021, 216, 108852.	12.0	97
31	SOX2 and Bcl-2 as a Novel Prognostic Value in Hepatocellular Carcinoma Progression. Current Oncology, 2021, 28, 3015-3029.	2.2	5
32	pNaSS-Grafted PCL Film-Guided rAAV TGF-β Gene Therapy Activates the Chondrogenic Activities in Human Bone Marrow Aspirates. Human Gene Therapy, 2021, 32, 895-906.	2.7	4
33	Ectopic models recapitulating morphological and functional features of articular cartilage. Annals of Anatomy, 2021, 237, 151721.	1.9	3
34	Synthesis, characterization, toxicity and morphology assessments of newly prepared microemulsion systems for delivery of valproic acid. Journal of Molecular Liquids, 2021, 338, 116625.	4.9	40
35	Design of Mannose-Coated Rifampicin nanoparticles modulating the immune response and Rifampicin induced hepatotoxicity with improved oral drug delivery. Arabian Journal of Chemistry, 2021, 14, 103321.	4.9	23
36	A Comprehensive Review of Detection Methods for SARS-CoV-2. Microorganisms, 2021, 9, 232.	3.6	74

#	Article	IF	CITATIONS
37	rAAV-Mediated <i>sox9</i> Overexpression Improves the Repair of Osteochondral Defects in a Clinically Relevant Large Animal Model Over Time In Vivo and Reduces Perifocal Osteoarthritic Changes. American Journal of Sports Medicine, 2021, 49, 3696-3707.	4.2	13
38	Stem cell-derived biofactors fight against coronavirus infection. World Journal of Stem Cells, 2021, 13, 1813-1825.	2.8	4
39	The diagnostic value of immunohistochemical staining of the interstitial vascular C4d complement in membranous nephropathy. Current Issues in Pharmacy and Medical Sciences, 2021, 34, 181-186.	0.4	0
40	Biomaterial-Guided Recombinant Adeno-associated Virus Delivery from Poly(Sodium Styrene) Tj ETQq0 0 0 rgB1 Engineering - Part A, 2020, 26, 450-459.	/Overlock 3.1	10 Tf 50 627 12
41	Thermosensitive Hydrogel Based on PEO–PPO–PEO Poloxamers for a Controlled In Situ Release of Recombinant Adenoâ€Associated Viral Vectors for Effective Gene Therapy of Cartilage Defects. Advanced Materials, 2020, 32, e1906508.	21.0	108
42	Scaffold-Mediated Gene Delivery for Osteochondral Repair. Pharmaceutics, 2020, 12, 930.	4.5	16
43	Analysis of spatial osteochondral heterogeneity in advanced knee osteoarthritis exposes influence of joint alignment. Science Translational Medicine, 2020, 12, .	12.4	21
44	Cyclodextrin Cationic Polymer-Based Nanoassemblies to Manage Inflammation by Intra-Articular Delivery Strategies. Nanomaterials, 2020, 10, 1712.	4.1	6
45	Curcumin Nanocrystals: Production, Physicochemical Assessment, and In Vitro Evaluation of the Antimicrobial Effects against Bacterial Loading of the Implant Fixture. Applied Sciences (Switzerland), 2020, 10, 8356.	2.5	16
46	Investigation of microstructural alterations of the human subchondral bone following microfracture penetration reveals effect of threeâ€dimensional device morphology. Clinical and Translational Medicine, 2020, 10, e230.	4.0	5
47	Cyst formation in the subchondral bone following cartilage repair. Clinical and Translational Medicine, 2020, 10, e248.	4.0	11
48	rAAV-Mediated Overexpression of SOX9 and TGF-β via Carbon Dot-Guided Vector Delivery Enhances the Biological Activities in Human Bone Marrow-Derived Mesenchymal Stromal Cells. Nanomaterials, 2020, 10, 855.	4.1	15
49	Enhanced Chondrogenic Differentiation Activities in Human Bone Marrow Aspirates via sox9 Overexpression Mediated by pNaSS-Grafted PCL Film-Guided rAAV Gene Transfer. Pharmaceutics, 2020, 12, 280.	4.5	15
50	Small-Diameter Subchondral Drilling Improves DNA and Proteoglycan Content of the Cartilaginous Repair Tissue in a Large Animal Model of a Full-Thickness Chondral Defect. Journal of Clinical Medicine, 2020, 9, 1903.	2.4	12
51	Therapeutic Delivery of rAAV sox9 via Polymeric Micelles Counteracts the Effects of Osteoarthritis-Associated Inflammatory Cytokines in Human Articular Chondrocytes. Nanomaterials, 2020, 10, 1238.	4.1	10
52	The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 536.	4.1	86
53	Exploring the Role of Stem Cells in Cancer Development and Progression. Annals of Cancer Research and Therapy, 2020, 28, 3-8.	0.3	3
54	Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics, 2020, 12, 335.	4.5	15

#	Article	IF	CITATIONS
55	Dysregulated levels of glycogen synthase kinase-31² (CSK-31²) and miR-135 in peripheral blood samples of cases with nephrotic syndrome. PeerJ, 2020, 8, e10377.	2.0	3
56	Analysis of early cellular responses of anterior cruciate ligament fibroblasts seeded on different molecular weight polycaprolactone films functionalized by a bioactive poly(sodium styrene) Tj ETQq0 0 0 rgBT /	Overlock 1	.0 Tef 50 697 T
57	Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment. Journal of Clinical Medicine, 2019, 8, 1637.	2.4	8
58	Secretome and Extracellular Vesicles as New Biological Therapies for Knee Osteoarthritis: A Systematic Review. Journal of Clinical Medicine, 2019, 8, 1867.	2.4	62
59	Association of Nicotine with Osteochondrogenesis and Osteoarthritis Development: The State of the Art of Preclinical Research. Journal of Clinical Medicine, 2019, 8, 1699.	2.4	5
60	Remodeling of Human Osteochondral Defects via rAAV-Mediated Co-Overexpression of TGF-Î ² and IGF-I from Implanted Human Bone Marrow-Derived Mesenchymal Stromal Cells. Journal of Clinical Medicine, 2019, 8, 1326.	2.4	4
61	Topographic modeling of early human osteoarthritis in sheep. Science Translational Medicine, 2019, 11,	12.4	31
62	Current Trends in Viral Gene Therapy for Human Orthopaedic Regenerative Medicine. Tissue Engineering and Regenerative Medicine, 2019, 16, 345-355.	3.7	19
63	Therapeutic Effects of rAAV-Mediated Concomittant Gene Transfer and Overexpression of TGF-β and IGF-I on the Chondrogenesis of Human Bone-Marrow-Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 2591.	4.1	8
64	Supramolecular Cyclodextrin-Based Hydrogels for Controlled Gene Delivery. Polymers, 2019, 11, 514.	4.5	37
65	An overview of thermal necrosis: present and future. Current Medical Research and Opinion, 2019, 35, 1555-1562.	1.9	41
66	Future Aspects of Clinical Osteoarthritis Therapies in the Continuum of Translational Research. Zeitschrift Fur Orthopadie Und Unfallchirurgie, 2019, 157, 629-643.	0.7	2
67	Asymptomatic focal calcium pyrophosphate crystal deposition within partially failed repair tissue after matrix-assisted autologous chondrocyte implantation. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, 27, 1939-1942.	4.2	1
68	Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nature Reviews Rheumatology, 2019, 15, 18-29.	8.0	92
69	Cells, soluble factors and matrix harmonically play the concert of allograft integration. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, 27, 1717-1725.	4.2	18
70	Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence. American Journal of Sports Medicine, 2019, 47, 222-231.	4.2	77
71	Translational applications of photopolymerizable hydrogels for cartilage repair. Journal of Experimental Orthopaedics, 2019, 6, 47.	1.8	25
72	Biomaterials and Gene Therapy: A Smart Combination for MSC Musculoskeletal Engineering. Current	1.3	11

Stem Cell Research and Therapy: A Smart Combination Stem Cell Research and Therapy, 2019, 14, 337-343.

#	Article	IF	CITATIONS
73	Chondrogenic Differentiation Processes in Human Bone-Marrow Aspirates Seeded in Three-Dimensional-Woven Poly(É›-Caprolactone) Scaffolds Enhanced by Recombinant Adeno-Associated Virus–MediatedSOX9Gene Transfer. Human Gene Therapy, 2018, 29, 1277-1286.	2.7	12
74	Advances in gene therapy for cartilage repair. Annals of Joint, 2018, 3, 97-97.	1.0	7
75	Injectable Systems for Intra-Articular Delivery of Mesenchymal Stromal Cells for Cartilage Treatment: A Systematic Review of Preclinical and Clinical Evidence. International Journal of Molecular Sciences, 2018, 19, 3322.	4.1	25
76	Improved Chondrogenic Differentiation of rAAV SOX9-Modified Human MSCs Seeded in Fibrin-Polyurethane Scaffolds in a Hydrodynamic Environment. International Journal of Molecular Sciences, 2018, 19, 2635.	4.1	18
77	Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room. Journal of Experimental Orthopaedics, 2018, 5, 14.	1.8	28
78	Effective Remodelling of Human Osteoarthritic Cartilage by <i>sox9</i> Gene Transfer and Overexpression upon Delivery of rAAV Vectors in Polymeric Micelles. Molecular Pharmaceutics, 2018, 15, 2816-2826.	4.6	29
79	Effects of TGF-Î ² Overexpression via rAAV Gene Transfer on the Early Repair Processes in an Osteochondral Defect Model in Minipigs. American Journal of Sports Medicine, 2018, 46, 1987-1996.	4.2	30
80	Sustained spatiotemporal release of TGFâ€Î²1 confers enhanced very early chondrogenic differentiation during osteochondral repair in specific topographic patterns. FASEB Journal, 2018, 32, 5298-5311.	0.5	16
81	PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine—An Overview. International Journal of Molecular Sciences, 2018, 19, 775.	4.1	59
82	Subchondral drilling for articular cartilage repair: a systematic review of translational research. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	37
83	Controlled release of gene therapy constructs from solid scaffolds for therapeutic applications in orthopedics. Discovery Medicine, 2018, 25, 195-203.	0.5	5
84	Controlled Gene Delivery Systems for Articular Cartilage Repair. Advanced Structured Materials, 2017, , 261-300.	0.5	1
85	Effects of combined rAAV-mediated TGF-Î ² and sox9 gene transfer and overexpression on the metabolic and chondrogenic activities in human bone marrow aspirates. Journal of Experimental Orthopaedics, 2017, 4, 4.	1.8	5
86	Peripheral blood aspirates overexpressing IGFâ€I <i>via</i> rAAV gene transfer undergo enhanced chondrogenic differentiation processes. Journal of Cellular and Molecular Medicine, 2017, 21, 2748-2758.	3.6	9
87	Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine. International Journal of Pharmaceutics, 2017, 531, 492-503.	5.2	33
88	New cell engineering approaches for cartilage regenerative medicine. Bio-Medical Materials and Engineering, 2017, 28, S201-S207.	0.6	1
89	Early loss of subchondral bone following microfracture is counteracted by bone marrow aspirate in a translational model of osteochondral repair. Scientific Reports, 2017, 7, 45189.	3.3	20
90	Hydrogels for precision meniscus tissue engineering: a comprehensive review. Connective Tissue Research, 2017, 58, 317-328.	2.3	25

Magali Cucchiarini

#	Article	IF	CITATIONS
91	Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells. Expert Review of Medical Devices, 2017, 14, 717-732.	2.8	15
92	Impact of mechanical stimulation on the chondrogenic processes in human bone marrow aspirates modified to overexpress sox9 via rAAV vectors. Journal of Experimental Orthopaedics, 2017, 4, 22.	1.8	9
93	Genetic Modification of Human Peripheral Blood Aspirates Using Recombinant Adeno-Associated Viral Vectors for Articular Cartilage Repair with a Focus on Chondrogenic Transforming Growth Factor-β Gene Delivery. Stem Cells Translational Medicine, 2017, 6, 249-260.	3.3	11
94	rAAV-mediated overexpression of TGF-β via vector delivery in polymeric micelles stimulates the biological and reparative activities of human articular chondrocytes in vitro and in a human osteochondral defect model. International Journal of Nanomedicine, 2017, Volume 12, 6985-6996.	6.7	33
95	Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects. Stem Cells International, 2017, 2017, 1-13.	2.5	56
96	Smart and Controllable rAAV Gene Delivery Carriers in Progenitor Cells for Human Musculoskeletal Regenerative Medicine with a Focus on the Articular Cartilage. Current Gene Therapy, 2017, 17, 127-138.	2.0	7
97	Gene Transfer Strategies for Articular Cartilage Repair. , 2017, , 151-167.		0
98	Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair. BioMed Research International, 2016, 2016, 1-12.	1.9	39
99	rAAVâ€mediated combined gene transfer and overexpression of TGFâ€Î² and SOX9 remodels human osteoarthritic articular cartilage. Journal of Orthopaedic Research, 2016, 34, 2181-2190.	2.3	23
100	Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells and Development, 2016, 25, 1495-1512.	2.1	7
101	Biomedical-grade, high mannuronic acid content (BioMVM) alginate enhances the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D microenvironment. Scientific Reports, 2016, 6, 28170.	3.3	14
102	Recent tissue engineering-based advances for effective rAAV-mediated gene transfer in the musculoskeletal system. Bioengineered, 2016, 7, 175-188.	3.2	11
103	Gene Therapy, Growth Factors, Mesenchymal Cells, New Trends and Future Perspectives. , 2016, , 559-575.		1
104	<scp>TGF</scp> â€î² gene transfer and overexpression <i>via</i> <scp>rAAV</scp> vectors stimulates chondrogenic events in human bone marrow aspirates. Journal of Cellular and Molecular Medicine, 2016, 20, 430-440.	3.6	16
105	Effects of rAAV-mediated FGF-2 gene transfer and overexpression upon the chondrogenic differentiation processes in human bone marrow aspirates. Journal of Experimental Orthopaedics, 2016, 3, 16.	1.8	8
106	Basic science of osteoarthritis. Journal of Experimental Orthopaedics, 2016, 3, 22.	1.8	69
107	PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model. ACS Applied Materials & amp; Interfaces, 2016, 8, 20600-20613.	8.0	38
108	A novel algorithm for a precise analysis of subchondral bone alterations. Scientific Reports, 2016, 6, 32982.	3.3	11

#	Article	IF	CITATIONS
109	Role of the Subchondral Bone in Articular Cartilage Degeneration and Repair. Journal of the American Academy of Orthopaedic Surgeons, The, 2016, 24, e45-e46.	2.5	24
110	Co-overexpression of TGF-Î ² and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2016, 7, 20.	5.5	24
111	Small-Diameter Awls Improve Articular Cartilage Repair After Microfracture Treatment in a Translational Animal Model. American Journal of Sports Medicine, 2016, 44, 209-219.	4.2	67
112	Controlled release strategies for rAAV-mediated gene delivery. Acta Biomaterialia, 2016, 29, 1-10.	8.3	40
113	Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opinion on Biological Therapy, 2016, 16, 331-346.	3.1	44
114	Human gene therapy: novel approaches to improve the current gene delivery systems. Discovery Medicine, 2016, 21, 495-506.	0.5	27
115	Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency. Acta Biomaterialia, 2015, 18, 118-127.	8.3	47
116	Large animal models in experimental knee sports surgery: focus on clinical translation. Journal of Experimental Orthopaedics, 2015, 2, 9.	1.8	31
117	New trends in articular cartilage repair. Journal of Experimental Orthopaedics, 2015, 2, 8.	1.8	12
118	Overexpression of TGF-Î ² via rAAV-Mediated Gene Transfer Promotes the Healing of Human Meniscal Lesions Ex Vivo on Explanted Menisci. American Journal of Sports Medicine, 2015, 43, 1197-1205.	4.2	24
119	Comprehensive analysis of translational osteochondral repair: Focus on the histological assessment. Progress in Histochemistry and Cytochemistry, 2015, 50, 19-36.	5.1	24
120	PEO–PPO–PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomaterialia, 2015, 27, 42-52.	8.3	50
121	Chondrogenic Differentiation Processes in Human Bone Marrow Aspirates upon rAAV-Mediated Gene Transfer and Overexpression of the Insulin-Like Growth Factor I. Tissue Engineering - Part A, 2015, 21, 2460-2471.	3.1	20
122	Adapted chondrogenic differentiation of human mesenchymal stem cells via controlled release of TGF-β1 from poly(ethylene oxide)-terephtalate/poly(butylene terepthalate) multiblock scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 371-383.	4.0	23
123	Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 2704-2714.	4.2	35
124	Current Progress in Stem Cell-Based Gene Therapy for Articular Cartilage Repair. Current Stem Cell Research and Therapy, 2015, 10, 121-131.	1.3	43
125	Current perspectives in stem cell research for knee cartilage repair. Stem Cells and Cloning: Advances and Applications, 2014, 7, 1.	2.3	64
126	Small Subchondral Drill Holes Improve Marrow Stimulation of Articular Cartilage Defects. American Journal of Sports Medicine, 2014, 42, 2741-2750.	4.2	119

#	Article	IF	CITATIONS
127	Determination of the Chondrogenic Differentiation Processes in Human Bone Marrow-Derived Mesenchymal Stem Cells Genetically Modified to Overexpress Transforming Growth Factor-β via Recombinant Adeno-Associated Viral Vectors. Human Gene Therapy, 2014, 25, 1050-1060.	2.7	47
128	Enhanced expression of the central survival of motor neuron (<scp>SMN</scp>) protein during the pathogenesis of osteoarthritis. Journal of Cellular and Molecular Medicine, 2014, 18, 115-124.	3.6	9
129	Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2014, 5, 103.	5.5	42
130	Enamel matrix derivative inhibits proteoglycan production and articular cartilage repair, delays the restoration of the subchondral bone and induces changes of the synovial membrane in a lapine osteochondral defect modelin vivo. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 41-49.	2.7	6
131	Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part II: standard and overcorrection do not cause articular cartilage degeneration. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 1666-1677.	4.2	33
132	Transforming Growth Factor Beta-Releasing Scaffolds for Cartilage Tissue Engineering. Tissue Engineering - Part B: Reviews, 2014, 20, 106-125.	4.8	114
133	The potential of gene transfer for the treatment of osteoarthritis. Regenerative Medicine, 2014, 9, 5-8.	1.7	8
134	Use of Tissue Engineering Strategies to Repair Joint Tissues in Osteoarthritis: Viral Gene Transfer Approaches. Current Rheumatology Reports, 2014, 16, 449.	4.7	13
135	Tissue-Engineering Strategies to Repair Joint Tissue in Osteoarthritis: Nonviral Gene-Transfer Approaches. Current Rheumatology Reports, 2014, 16, 450.	4.7	20
136	Nonviral gene transfer into human meniscal cells. Part II: effect of three-dimensional environment and overexpression of human fibroblast growth factor 2. International Orthopaedics, 2014, 38, 1931-1936.	1.9	10
137	Nonviral gene transfer to human meniscal cells. Part I: transfection analyses and cell transplantation to meniscus explants. International Orthopaedics, 2014, 38, 1923-1930.	1.9	11
138	rAAV-mediated overexpression of TGF-β stably restructures human osteoarthritic articular cartilage in situ. Journal of Translational Medicine, 2013, 11, 211.	4.4	51
139	Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. Journal of Molecular Medicine, 2013, 91, 625-636.	3.9	80
140	Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: analysis of the lateral meniscus. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 39-48.	4.2	32
141	Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 1717-1729.	4.2	199
142	Reduction of Sample Size Requirements by Bilateral Versus Unilateral Research Designs in Animal Models for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2013, 19, 885-891.	2.1	31
143	Direct FGF-2 Gene Transfer via Recombinant Adeno-Associated Virus Vectors Stimulates Cell Proliferation, Collagen Production, and the Repair of Experimental Lesions in the Human ACL. American Journal of Sports Medicine, 2013, 41, 194-202.	4.2	44
144	Advances and challenges in geneâ€based approaches for osteoarthritis. Journal of Gene Medicine, 2013, 15, 343-355.	2.8	43

MAGALI CUCCHIARINI

#	Article	IF	CITATIONS
145	Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. Journal of Orthopaedic Research, 2013, 31, 1772-1779.	2.3	49
146	Tissue engineering for articular cartilage repair $\hat{a} \in $ the state of the art. , 2013, 25, 248-267.		305
147	Effect of Subchondral Drilling on the Microarchitecture of Subchondral Bone. American Journal of Sports Medicine, 2012, 40, 828-836.	4.2	109
148	Human mesenchymal stem cells overexpressing therapeutic genes: From basic science to clinical applications for articular cartilage repair. Bio-Medical Materials and Engineering, 2012, 22, 197-208.	0.6	19
149	rAAV Vectors as Safe and Efficient Tools for the Stable Delivery of Genes to Primary Human Chondrosarcoma Cells <i>In Vitro</i> and <i>In Situ</i> . Sarcoma, 2012, 2012, 1-11.	1.3	2
150	Failed cartilage repair for early osteoarthritis defects: a biochemical, histological and immunohistochemical analysis of the repair tissue after treatment with marrow-stimulation techniques. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 2315-2324.	4.2	82
151	SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Research and Therapy, 2012, 3, 22.	5.5	108
152	Benefits of Recombinant Adeno-Associated Virus (rAAV)-Mediated Insulinlike Growth Factor I (IGF-I) Overexpression for the Long-Term Reconstruction of Human Osteoarthritic Cartilage by Modulation of the IGF-I Axis. Molecular Medicine, 2012, 18, 346-358.	4.4	56
153	Effective, safe nonviral gene transfer to preserve the chondrogenic differentiation potential of human mesenchymal stem cells. Journal of Gene Medicine, 2012, 14, 501-511.	2.8	35
154	<i>In Vitro</i> and <i>In Vivo</i> Characterization of Nonbiomedical- and Biomedical-Grade Alginates for Articular Chondrocyte Transplantation. Tissue Engineering - Part C: Methods, 2011, 17, 829-842.	2.1	33
155	Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surgery, Sports Traumatology, Arthroscopy, 2011, 19, 2119-2130.	4.2	57
156	Evaluation of nonbiomedical and biomedical grade alginates for the transplantation of genetically modified articular chondrocytes to cartilage defects in a large animal model <i>in vivo</i> . Journal of Gene Medicine, 2011, 13, 230-242.	2.8	20
157	Metabolic Activities and Chondrogenic Differentiation of Human Mesenchymal Stem Cells Following Recombinant Adeno-Associated Virus–Mediated Gene Transfer and Overexpression of Fibroblast Growth Factor 2. Tissue Engineering - Part A, 2011, 17, 1921-1933.	3.1	82
158	Gene Therapy for Cartilage Repair. Cartilage, 2011, 2, 201-225.	2.7	48
159	Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croatian Medical Journal, 2011, 52, 245-261.	0.7	42
160	Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Archives of Orthopaedic and Trauma Surgery, 2010, 130, 1311-1322.	2.4	58
161	Genetic modification of mesenchymal stem cells for cartilage repair. Bio-Medical Materials and Engineering, 2010, 20, 135-143.	0.6	10
162	Remodelling of human osteoarthritic cartilage by FGFâ€2, alone or combined with <i>Sox9 via</i> rAAV gene transfer. Journal of Cellular and Molecular Medicine, 2009, 13, 2476-2488.	3.6	65

MAGALI CUCCHIARINI

#	Article	IF	CITATIONS
163	Analysis of Novel Nonviral Gene Transfer Systems for Gene Delivery to Cells of the Musculoskeletal System. Molecular Biotechnology, 2008, 38, 137-144.	2.4	25
164	Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factorSOX9. Arthritis and Rheumatism, 2007, 56, 158-167.	6.7	143
165	Effect of transforming growth factor-beta 1 (TGF-ß1) released from a scaffold on chondrogenesis in an osteochondral defect model in the rabbit. Open Life Sciences, 2006, 1, 43-60.	1.4	2
166	Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2)in vivo. Journal of Gene Medicine, 2006, 8, 100-111.	2.8	109
167	Gene therapy for cartilage defects. Journal of Gene Medicine, 2005, 7, 1495-1509.	2.8	112
168	Improved Tissue Repair in Articular Cartilage Defects in Vivo by rAAV-Mediated Overexpression of Human Fibroblast Growth Factor 2. Molecular Therapy, 2005, 12, 229-238.	8.2	152
169	Menisci are Efficiently Transduced by Recombinant Adeno-Associated virus Vectors in Vitro and in Vivo. American Journal of Sports Medicine, 2004, 32, 1860-1865.	4.2	39
170	Sustained transgene expression in cartilage defectsin vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system. Journal of Gene Medicine, 2003, 5, 502-509.	2.8	77
171	Recombinant Adeno-Associated Virus Vectors Efficiently and Persistently Transduce Chondrocytes in Normal and Osteoarthritic Human Articular Cartilage. Human Gene Therapy, 2003, 14, 393-402.	2.7	135
172	Effects of rAAV-mediated overexpression of bone morphogenetic protein 3 (BMP-3) on the chondrogenic fate of human bone marrow-derived mesenchymal stromal cells. Human Gene Therapy, 0,	2.7	3