Ren-Jie Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335663/publications.pdf

Version: 2024-02-01

		304743	3	45221	
34	1,896	22		36	
papers	citations	h-index		g-index	
			_		
26	26	26		2265	
36	36	36		2265	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	Citations
1	Four plasma membrane-localized MGR transporters mediate xylem Mg2+ loading for root-to-shoot Mg2+ translocation in Arabidopsis. Molecular Plant, 2022, 15, 805-819.	8.3	13
2	Conserved mechanism for vacuolar magnesium sequestration in yeast and plant cells. Nature Plants, 2022, 8, 181-190.	9.3	16
3	Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway. IScience, 2022, 25, 103754.	4.1	2
4	Two tonoplast proton pumps function in Arabidopsis embryo development. New Phytologist, 2020, 225, 1606-1617.	7.3	14
5	Plant Membrane Transport Research inÂtheÂPost-genomic Era. Plant Communications, 2020, 1, 100013.	7.7	26
6	Genome-Wide Analysis of the Five Phosphate Transporter Families in Camelina sativa and Their Expressions in Response to Low-P. International Journal of Molecular Sciences, 2020, 21, 8365.	4.1	10
7	Rhythms of magnesium. Nature Plants, 2020, 6, 742-743.	9.3	10
8	The CBL–CIPK Calcium Signaling Network: Unified Paradigm from 20 Years of Discoveries. Trends in Plant Science, 2020, 25, 604-617.	8.8	181
9	A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments. Nature Plants, 2020, 6, 384-393.	9.3	76
10	Arabidopsis Seedling Lethal 1 Interacting With Plastid-Encoded RNA Polymerase Complex Proteins Is Essential for Chloroplast Development. Frontiers in Plant Science, 2020, 11, 602782.	3 . 6	6
11	A Defective Vacuolar Proton Pump Enhances Aluminum Tolerance by Reducing Vacuole Sequestration of Organic Acids. Plant Physiology, 2019, 181, 743-761.	4.8	22
12	Calcineurin B-Like Proteins CBL4 and CBL10 Mediate Two Independent Salt Tolerance Pathways in Arabidopsis. International Journal of Molecular Sciences, 2019, 20, 2421.	4.1	49
13	Golgi″ocalized cation/proton exchangers regulate ionic homeostasis and skotomorphogenesis in Arabidopsis. Plant, Cell and Environment, 2019, 42, 673-687.	5.7	25
14	Vacuolar Proton Pyrophosphatase Is Required for High Magnesium Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2018, 19, 3617.	4.1	15
15	Magnesium Transporter MGT6 Plays an Essential Role in Maintaining Magnesium Homeostasis and Regulating High Magnesium Tolerance in Arabidopsis. Frontiers in Plant Science, 2018, 9, 274.	3. 6	37
16	Two tonoplast MATE proteins function as turgor-regulating chloride channels in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2036-E2045.	7.1	70
17	Overexpression of <i>Populus trichocarpa <scp>CYP</scp>85A3</i> production in transgenic trees. Plant Biotechnology Journal, 2017, 15, 1309-1321.	8.3	58
18	FERONIA Receptor Kinase at the Crossroads of Hormone Signaling and Stress Responses. Plant and Cell Physiology, 2017, 58, 1143-1150.	3.1	83

#	Article	IF	CITATIONS
19	Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Current Opinion in Plant Biology, 2017, 39, 97-105.	7.1	170
20	Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars. Frontiers in Plant Science, 2017, 8, 1752.	3.6	57
21	Arabidopsis choline transporter-like 1 (CTL1) regulates secretory trafficking of auxin transporters to control seedling growth. PLoS Biology, 2017, 15, e2004310.	5 . 6	35
22	Transgenic studies reveal the positive role of LeEIL-1 in regulating shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. BMC Plant Biology, 2016, 16, 121.	3.6	15
23	Transport and homeostasis of potassium and phosphate: limiting factors for sustainable crop production. Journal of Experimental Botany, 2016, 68, erw444.	4.8	42
24	Transgenic analysis reveals LeACS-1 as a positive regulator of ethylene-induced shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. Plant Molecular Biology, 2016, 90, 345-358.	3.9	17
25	Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis. PLoS ONE, 2016, 11, e0168040.	2.5	43
26	The calcium sensor CBL7 modulates plant responses to low nitrate in Arabidopsis. Biochemical and Biophysical Research Communications, 2015, 468, 59-65.	2.1	40
27	Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3134-3139.	7.1	208
28	Overexpression of the $\langle i \rangle \langle scp \rangle P \langle scp \rangle t \langle scp \rangle SOS \langle scp \rangle 2 \langle i \rangle$ gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotechnology Journal, 2015, 13, 962-973.	8.3	51
29	An ABC transporter complex encoded by Aluminum Sensitive 3 and NAP3 is required for phosphate deficiency responses in Arabidopsis. Biochemical and Biophysical Research Communications, 2015, 463, 18-23.	2.1	33
30	Functional repression of PtSND2 represses growth and development by disturbing auxin biosynthesis, transport and signaling in transgenic poplar. Tree Physiology, 2015, 35, 95-105.	3.1	3
31	Poplar calcineurin <scp>B</scp> â€like proteins <scp>PtCBL10A</scp> and <scp>PtCBL10B</scp> regulate shoot salt tolerance through interaction with <scp>PtSOS2</scp> in the vacuolar membrane. Plant, Cell and Environment, 2014, 37, 573-588.	5.7	69
32	<i>Arabidopsis</i> Transporter MGT6 Mediates Magnesium Uptake and Is Required for Growth under Magnesium Limitation. Plant Cell, 2014, 26, 2234-2248.	6.6	108
33	Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Research, 2012, 22, 1650-1665.	12.0	168
34	The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Molecular Biology, 2010, 74, 367-380.	3.9	120