Vedran Mrzljak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335436/publications.pdf

Version: 2024-02-01

58	790	14	25
papers	citations	h-index	g-index
59	59	59	507
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	CFD Analysis of a Large Marine Engine Scavenging Process. Processes, 2022, 10, 141.	1.3	7
2	Selection Maps of Explicit Colebrook Approximations according to Calculation Time and Precision. Heat Transfer Engineering, 2021, 42, 839-853.	1.2	4
3	On Urinary Bladder Cancer Diagnosis: Utilization of Deep Convolutional Generative Adversarial Networks for Data Augmentation. Biology, 2021, 10, 175.	1.3	13
4	Thermodynamic Analysis of a Condensate Heating System from a Marine Steam Propulsion Plant with Steam Reheating. Journal of Marine Science and Application, 2021, 20, 117-127.	0.7	3
5	The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 2021, 35, 69-86.	0.2	8
6	Use of Genetic Programming for the Estimation of CODLAG Propulsion System Parameters. Journal of Marine Science and Engineering, 2021, 9, 612.	1.2	6
7	Energy, Economic and Environmental Effects of the Marine Diesel Engine Trigeneration Energy Systems. Journal of Marine Science and Engineering, 2021, 9, 773.	1.2	9
8	Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator. International Journal of Advanced Robotic Systems, 2021, 18, 172988142092528.	1.3	15
9	Estimation of COVID-19 epidemic curves using genetic programming algorithm. Health Informatics Journal, 2021, 27, 146045822097672.	1.1	16
10	Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach. Biology, 2021, 10, 1134.	1.3	6
11	Developments in Marine Hybrid Propulsion. , 2021, , .		1
12	Energy and Exergy Analysis of Waste Heat Recovery Closed-Cycle Gas Turbine System while Operating with Different Medium. Journal of Maritime & Transportation Science, 2021, 60, 21-48.	0.2	2
13	The Change in Low Power Steam Turbine Operating Parameters During Extractions Opening/Closing. Journal of Maritime & Transportation Science, 2021, 61, 57-78.	0.2	O
14	Conversion of A medium heavy heating oil tank into A heat storage tank. Heat and Mass Transfer, 2020, 56, 871-890.	1.2	2
15	Numerical analysis of geometrical and process parameters influence on temperature stratification in a large volumetric heat storage tank. Energy, 2020, 194, 116878.	4.5	21
16	Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 2020, 34, 74-85.	0.2	12
17	Analysis and Optimization of Atmospheric Drain Tank of Lng Carrier Steam Power Plant. Journal of Marine Science and Engineering, 2020, 8, 568.	1.2	6
18	Analysis of Low-Power Steam Turbine With One Extraction for Marine Applications. Nase More, 2020, 67, 87-95.	0.1	5

#	Article	IF	Citations
19	Comparison of Power Distribution, Losses and Efficiencies of a Steam Turbine with and without Extractions. TehniÄki Glasnik, 2020, 14, 480-487.	0.4	1
20	Improvement of Marine Steam Turbine Conventional Exergy Analysis by Neural Network Application. Journal of Marine Science and Engineering, 2020, 8, 884.	1.2	16
21	Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-10.	0.7	141
22	Three Approaches to Low-Duty Turbo Compressor Efficiency Exploitation Evaluation. Applied Sciences (Switzerland), 2020, 10, 3373.	1.3	1
23	Energy Loss Analysis at the Gland Seals of a Marine Turbo-Generator Steam Turbine. TehniÄki Glasnik, 2020, 14, 19-26.	0.4	8
24	Pressure drop in large volumetric heat storage tank radial plate diffuser. Journal of Energy Storage, 2020, 29, 101350.	3.9	1
25	Exergy analysis of marine waste heat recovery CO2 closed-cycle gas turbine system. Pomorstvo, 2020, 34, 309-322.	0.2	5
26	Energy and Exergy Evaluation of a Two-Stage Axial Vapour Compressor on the LNG Carrier. Entropy, 2020, 22, 115.	1.1	5
27	The Leakage of Steam Mass Flow Rate through the Gland Seals – Influence on Turbine Produced Power. Journal of Maritime & Transportation Science, 2020, 58, 39-56.	0.2	1
28	Comparison of Exergy and Various Energy Analysis Methods for a Main Marine Steam Turbine at Different Loads. Journal of Maritime & Transportation Science, 2020, 59, 9-34.	0.2	3
29	LNG Carrier Main Steam Turbine Reliability in the Exploatation Period of Time. TransNav, 2020, 14, 39-42.	0.3	1
30	COMPARISON OF ENERGY FLOW STREAM AND ISENTROPIC METHOD FOR STEAM TURBINE ENERGY ANALYSIS. Acta Polytechnica, 2019, 59, 109-125.	0.3	14
31	Energy and Exergy Analyses of Forced Draft Fan for Marine Steam Propulsion System during Load Change. Journal of Marine Science and Engineering, 2019, 7, 381.	1.2	17
32	2D CFD Simulation of Water Injection Strategies in a Large Marine Engine. Journal of Marine Science and Engineering, 2019, 7, 296.	1.2	32
33	Energy Analysis of Main Propulsion Steam Turbine from Conventional LNG Carrier at Three Different Loads. Nase More, 2019, 66, 10-18.	0.1	13
34	Numerical analysis of the fuel spray packages penetration and gas inflow from quasi-dimensional di diesel engine numerical model. Zbornik VeleuÄɨliÅ¡ta U Rijeci, 2019, 7, 335-357.	0.2	3
35	EXERGY ANALYSIS OF THE MAIN PROPULSION STEAM TURBINE FROM MARINE PROPULSION PLANT. Brodogradnja, 2019, 70, 59-77.	0.6	18
36	Multilayer Perceptron approach to Condition-Based Maintenance of Marine CODLAG Propulsion System Components. Pomorstvo, 2019, 33, 181-190.	0.2	16

3

#	Article	IF	CITATIONS
37	Exergy analysis of marine steam turbine labyrinth (gland) seals. Pomorstvo, 2019, 33, 76-83.	0.2	16
38	Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation. Energies, 2019, 12, 4352.	1.6	62
39	Marine Objects Recognition Using Convolutional Neural Networks. Nase More, 2019, 66, 112-120.	0.1	19
40	Analysis of Gas Turbine Operation before and after Major Maintenance. Journal of Maritime & Transportation Science, 2019, 57, 57-70.	0.2	2
41	Numerical Analysis of Fuel Injector Nozzle Geometry - Influence on Liquid Fuel Contraction Coefficient and Reynolds Number. Journal of Maritime & Transportation Science, 2019, 57, 23-45.	0.2	2
42	Numerical model for on-condition monitoring of condenser in coal-fired power plants. International Journal of Heat and Mass Transfer, 2018, 117, 912-923.	2.5	29
43	Energy and Exergy Analysis of the Condensate Pump During Internal Leakage from the Marine Steam Propulsion System. Pomorstvo, 2018, 32, 268-280.	0.2	3
44	Energy Power Losses and Efficiency of Low Power Steam Turbine for the Main Feed Water Pump Drive in the Marine Steam Propulsion System. Journal of Maritime & Transportation Science, 2018, 54, 37-51.	0.2	9
45	Low Power Steam Turbine Energy Efficiency and Losses During the Developed Power Variation. TehniÄki Glasnik, 2018, 12, 174-180.	0.4	12
46	Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant. Energies, 2018, 11, 3019.	1.6	11
47	Eksergijska analiza ventila tlaka pare kod pomorskoga porivnog postrojenja na konvencionalnom LNG tankeru. Nase More, 2018, 65, 24-31.	0.1	8
48	Change in Steam Generators Main and Auxiliary Energy Flow Streams During the Load Increase of LNG Carrier Steam Propulsion System. Pomorstvo, 2018, 32, 121-131.	0.2	8
49	Turbogenerator Steam Turbine Variation in Developed Power: Analysis of Exergy Efficiency and Exergy Destruction Change. Modelling and Simulation in Engineering, 2018, 2018, 1-12.	0.4	13
50	Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 2017, 119, 331-346.	3.0	53
51	Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy Conversion and Management, 2017, 140, 307-323.	4.4	50
52	Analiza energijske i eksergijske efikasnosti kondenzatora brtvene pare u propulzijskom sustavu LNG tankera. Nase More, 2017, 64, 20-25.	0.1	8
53	Quasi-dimensional diesel engine model with direct calculation of cylinder temperature and pressure. Tehnicki Vjesnik, 2017, 24, .	0.3	5
54	THERMODYNAMICAL ANALYSIS OF HIGH-PRESSURE FEED WATER HEATER IN STEAM PROPULSION SYSTEM DURING EXPLOITATION. Brodogradnja, 2017, 68, 45-61.	0.6	11

#	Article	IF	CITATION
55	Efficiency and losses analysis of low-pressure feed water heater in steam propulsion system during ship maneuvering period. Pomorstvo, 2016, 30, 133-140.	0.2	7
56	Simulation of a Two-Stroke Slow Speed Diesel Engine Using a Quasi-Dimensional Model. Transactions of Famena, 2016, 40, 35-44.	0.3	6
57	Volume agglomeration process in quasi-dimensional direct injection diesel engine numerical model. Energy, 2016, 115, 658-667.	4.5	13
58	An alternative and hybrid propulsion for merchant ships: current state and perspective. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-33.	1.2	5